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Introduction

What is memoryless computation?

An = {(a1, a2, . . . , an) | ai ∈ A}

f : An → An

Let A be a finite set of size q ≥ 2 and let n ≥ 2 be an integer.

Memoryless computation (MC) is a new model for
computing transformations of An with instructions that only
update one coordinate at a time while using no memory.
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Introduction

The XOR swap algorithm

Fig.: Swap of x and y using
a temporary variable z .

MC generalises the famous XOR swap algorithm:

Input: (x , y) ∈ Z2;

x :=x + y ;

y :=x − y ;

x :=x − y ;

Output: (x , y).

Example: (x , y) := (3, 2);

x :=3 + 2 = 5;

y :=5− 2 = 3;

x :=5− 3 = 2;

Output: (2, 3).
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Introduction

Why is MC interesting?

Here are some reasons:

1 Using memory consumes time and resources.

2 Every transformation of An may be computed without
memory.

3 If we use all possible instructions, every transformation of An

may be computed without memory in linear time.

4 We only need n + 1 fixed instructions in order to compute
without memory every transformation of An.
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2. Memoryless Computation
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Memoryless Computation

Instructions

Let Tran(An) be the full transformation monoid of An.

Denote any f ∈ Tran(An) by f = (f1, f2, . . . , fn), where
fi : An → A is the i-th coordinate function of f .

An instruction of An is a transformation f ∈ Tran(An) with
at most one nontrivial coordinate function fi , i.e. fi 6= pri .

For example, the following are instructions of Z2
q:

Instruction Update form

(x1, x2)f = (x1 + 1, x2) x1 ← x1 + 1

(x1, x2)g = (x1, x1 + x2) x2 ← x1 + x2
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Memoryless Computation

Memoryless Complexity

Let H be a set of instructions of An. Denote by 〈H〉 the
subsemigroup of Tran(An) generated by H.

A program of length ` computing g ∈ 〈H〉 is a sequence
f (1), . . . , f (`) ∈ H such that g = f (1) ◦ · · · ◦ f (`).

For example, a program computing (x1, x2)g = (x2, x1) is

f (1) : x1 ← x1 + x2, f (2) : x2 ← x1 − x2, f (3) : x1 ← x1 − x2.

The shortest length of a program computing g ∈ 〈H〉 with
instructions in H is called the memoryless complexity of g
with respect to H.
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Memoryless Computation

Main Results

Theorem (Burckel ‘96; Gadouleau-Riis ‘15)

Let A be a finite set and n ≥ 2. Let I be the set of all instructions
of An. Then, 〈I〉 = Tran(An).

Proof.
Let c1, c2, . . . , cq

n
be a Gray code for An, where |A| = q, so

states c i and c i+1 differ in exactly one coordinate. Hence, the set
of transpositions

H := {(c i , c i+1) : 1 ≤ i ≤ qn − 1}

is contained in I and coincides with the set of Coxeter generators
for Sym(An). Thus, H together with any instruction of defect 1
generates Tran(An).
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Memoryless Computation

Main Results

Theorem (Gadouleau-Riis ‘15)

The memoryles complexity of any g ∈ Tran(An) with respect to
the set of all instructions is at most 4n − 3.

Theorem (Cameron-Fairbairn-Gadouleau ‘14)

1 Unless |A| = n = 2, Sym(An) is generated by n instructions,
and Tran(An) is generated by n + 1 instructions.

2 If A is a finite field, the group GL(An) is generated by n
instructions.
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Universal Simulation

3. Universal Simulation

Alonso Castillo-Ramirez Durham University

Memoryless Computation and Universal Simulation



Introduction Memoryless Computation Universal Simulation

Universal Simulation

Motivation

Let A be a finite set of size q ≥ 2, and let m ≥ 2.

We want to study sets {F (1), . . . ,F (m)} of instructions of Am

such that F (i) updates the i-th coordinate.

The set {F (1), . . . ,F (m)} never generates Tran(Am), but is is
possible that, for some 2 ≤ n ≤ m, every transformation of An

may be “simulated” by these instructions.

We shall formalize this idea and study different schemes of
simulation such as sequential, parallel, and quasi-parallel.
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Universal Simulation

Notation

Let m ≥ n ≥ 2.

For any f = (f1, . . . , fm) ∈ Tran(Am), define

Sf := 〈F (1), . . . ,F (m)〉

where F (i) is the instruction of Am defined by xi ← (x)fi .

Denote [n] := {1, . . . , n}.

Consider the [n]-projection pr[n] : Am → An, where

(x1, . . . , xm)pr[n] := (x1, . . . , xn).
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Universal Simulation

Universal Transformations

Definition (CR-Gadouleau ‘15; cf. Dömösi-Nehaniv ‘05)

Let m ≥ n ≥ 2. A transformation f ∈ Tran(Am) simulates
g ∈ Tran(An) if there exists h ∈ Sf ⊆ Tran(Am) such that

pr[n] ◦ g = h ◦ pr[n];

(x1, . . . , xn)g = ((x)h1, . . . , (x)hn), (∀x ∈ Am).

The time of simulation of g by f is the minimum possible
memoryless complexity of h with respect to {F (1), . . . ,F (m)}.

An n-universal transformation of size m is a transformation of
Am that may simulate any transformation of An.
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Universal Simulation

Universal Transformations of Small Size

Theorem (CR-Gadouleau ‘15)

There is no n-universal transformation of size n, but there exists
one of size n + 2 and time of simulation 3(q− 1)nqn + O(qn).

Sketch of the Proof.
We find the required set {F (1), . . . ,F (n+2)} ⊆ Tran(An+2):

1. Choose a generating set of instructions H ⊆ Tran(An) such
that for any i ∈ [n], at most two instructions in H update i .

2. If there exist A,B ∈ H, A 6= B, that update i ∈ [n], let

F (i) : xi ←

{
(x)pr[n] ◦ Ai if xn+1 = xn+2

(x)pr[n] ◦ Bi if xn+1 6= xn+2.
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Universal Simulation

Universal Transformations of Small Size

Sketch of the Proof (continuation).

3. If there is a unique C ∈ H that update i ∈ [n], let
F (i) : xi ← (x)pr[n]◦i .

4. Let F (n+1) : xn+1 ← xn+2 and

F (n+2) : xn+2 ←

{
xn+2 + 1 if xn+1 = xn+2

xn+2 if xn+1 6= xn+2.

5. Any g ∈ Tran(An) has a program in H, so we may use this
program to define h ∈ Sf such that pr[n] ◦ g = h ◦ pr[n].

Question: Is there an n-universal transformation of size n + 1?
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Universal Simulation

Fast Universal Transformations

Theorem (CR-Gadouleau ‘15)

There is an n-universal transformation of Am with time of
simulation at most qn + O(n).

Idea of the Proof.

The key idea of the proof is to enumerate all the coordinate
functions An → A and use a one-error correcting code to decide
which one of them shall be computed in each simulation.

Question: Is there an n-universal transformation with maximum
time of simulation less than qn + O(n)?
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Universal Simulation

Sequential Simulation

Definition
A transformation f ∈ Tran(Am) sequentially simulates a
sequence of transformations g (1), . . . , g (`) ∈ Tran(An) if there are
h(1), . . . , h(`) ∈ Sf ⊆ Tran(Am) such that

pr[n] ◦ g (i) = h(1) ◦ · · · ◦ h(i) ◦ pr[n], ∀(1 ≤ i ≤ `).

An n-universal transformation is complete if it may sequentially
simulate any finite sequence of transformations of An.

Lemma
Any complete n-universal transformation has size m ≥ 2n.
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Universal Simulation

Other Schemes of Simulation

Theorem (CR-Gadouleau ‘15)

Let A be a finite set and m ≥ n ≥ 2.

1 There is an n-universal complete transformation of size
2n + 3.

2 There is no transformation f ∈ Tran(Am) that may simulate
in parallel (i.e. with h ∈ 〈f 〉 instead of h ∈ Sf ) every
transformation of An.

3 There is a transformation f ∈ Tran(Am) that may simulate
in quasi-parallel (i.e. with h ∈

〈
(f1, . . . , fm−1,prm),F (m)

〉
)

every finite sequence of Tran(An).
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Universal Simulation

Thanks for listening!

Universal Simulation of Automata Networks,
joint with M. Gadouleau
arXiv:1504.00169.
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