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Generators and relations for symmetric groups

S4 - symmetric group on {1,2,3,4}.
A generating set

S4 = <(1 2)’ (2 3)7 (3 4)>



Generators and relations for symmetric groups

S4 - symmetric group on {1,2,3,4}.
A generating set
Sa=((12),(23),(34))

Some relations between these
generators

(i) Elements have order 2:

(12)(12) = ()

(i) Non-overlapping commute:
(12)34)=(34)(12)




Generators and relations for symmetric groups

S4 - symmetric group on {1,2,3,4}.

A generating set >< ><

Sa=1((12),(23),(34))

Some relations between these >< = ><

generators

(i) Elements have order 2: >< ><

(12)(12) = ()

(ii) Non-overlapping commute: 1 2 3 1 2 3
(12)34)=(34)(12)

(iii) Partially overlapping:
(12)(23)(12)=(23)(12)(23)




Coxeter presentation

S, - the symmetric group on [r] = {1,2,...,r}.

S, = <(1 2),(23),,(}"711"»
S, is isomorphic to the group defined by the group presentation:

<g17"'agl’*1 |g12:1
gigi=g& li—jl>1
8i8i+18i = &i+18i8i+1 >

» This is called the Coxeter presentation for S,.

» It defines S, in terms of the generating set consisting of Coxeter
transpositions (i i + 1) where

generating symbol g; <— the generator (i i 4 1)



Aim of my talk

Letn,r e Nwith1 <r <n.

T, - full transformation monoid, S, - symmetric group.

» [ will give another finite presentation for S,.
» This presentation will have:

> Generating symbols <—pjjection—> rank r idempotents of 7},
> Relations obtained from certain quadruples of idempotents.



Aim of my talk

Letn,r e Nwith1 <r <n.
T, - full transformation monoid, S, - symmetric group.
» [ will give another finite presentation for S,.

» This presentation will have:

> Generating symbols <—pjjection—> rank r idempotents of 7},
> Relations obtained from certain quadruples of idempotents.

I aim to explain:

1. What we proved: The main theorem of the article

R. Gray and N. Ruskuc, Maximal subgroups of free idempotent generated
semigroups over the full transformation monoid.
Proc. London Math. Soc. 104 (2012) 997-1018.

2. Why we proved it: Motivated by free idempotent generated semigroups.

3. How we proved it: Finding an encoding of the Coxeter presentation in
the combinatorics of kernels and images of idempotent transformations.



Idempotent, sets and partitions

Idempotents in 7,
e € T, is an idempotent <> e acts as identity on its image im(e).

12 3 4\, .
62(4 ) 4>’lm(€):{2a4}W1th2€:2,4€:4,and€226.

p= <41; i ; 3) im(53) = {2,4} with 23 # 2, and * # .



Idempotent, sets and partitions

Idempotents in 7,
e € T, is an idempotent <> e acts as identity on its image im(e).

12 3 4) . .
62(4 ) 4>’1m(€):{2a4}Wlth2€=2,4€=4,and€2:e.

p= <41; i ; 3) im(53) = {2,4} with 23 # 2, and * # .

Images and kernels
Let « € T, with rank(«) = |im(a)| = 7.

Associated with « are:
A setim(«) of size r.
A partition ker(a) = {ma~" : m € im(«)} of [n] into r non-empty parts.



Idempotent, sets and partitions

Idempotents in 7,
e € T, is an idempotent <> e acts as identity on its image im(e).

12 3 4) . .
62(4 ) 4>’lm(€):{2a4}W1th2€:2,4€:4,and€2:6.

p= <41; i 3 ;) im(53) = {2,4} with 23 # 2, and * # .

Images and kernels
Let « € T, with rank(«) = |im(a)| = 7.

Associated with « are:
A setim(«) of size r.
A partition ker(a) = {ma~" : m € im(«)} of [n] into r non-empty parts.
1 2
3

3 6
5 3 3

im(a) = {2,3,5},  ker(a) = {{1,4},{2,3,6}, {5}}.

Example: o = ( ;.1

N N



Idempotent, sets and partitions
Letn,r e Nwith1 <r <n.
» [ = {partitions of [n] into r non-empty sets}
» J = {r-element subsets of [n]}
ForP € land A € J write A | Pif A is a transversal of P.

Fact: There is a natural bijection

{ idempotents in T,, or rank r}  <—pjjection— {(P,A) €I x J: A L P}
ep.4 with image A and kernel P — (P,A) (forA L P)



Idempotent, sets and partitions
Letn,r e Nwith1 <r <n.
» [ = {partitions of [n] into r non-empty sets}
» J = {r-element subsets of [n]}
ForP € land A € J write A | Pif A is a transversal of P.

Fact: There is a natural bijection
{ idempotents in T,, or rank r}  <—pjjection— {(P,A) €I x J: A L P}
ep.4 with image A and kernel P — (P,A) (forA L P)

Example
n=8,r=3with A L P being the pair 256 1 1247 | 35 | 68

Image
A =256

Kernel P =1247|35| 68 <1



Idempotent, sets and partitions
Letn,r e Nwith1 <r <n.
» [ = {partitions of [n] into r non-empty sets}
» J = {r-element subsets of [n]}
ForP € land A € J write A | Pif A is a transversal of P.

Fact: There is a natural bijection
{ idempotents in T,, or rank r}  <—pjjection— {(P,A) €I x J: A L P}
ep.4 with image A and kernel P — (P,A) (forA L P)

Example
n=38,r=3withA L P being the pair 256 L 1247 | 35 | 68

Image
A =256

1 23 45 6 7 8
Kernel P =1247|35| 68 <2 ) ’ 5 6 2 )—ep,A



Idempotent, sets and partitions
Letn,r e Nwith1 <r <n.
» [ = {partitions of [n] into r non-empty sets}
» J = {r-element subsets of [n]}
ForP € land A € J write A | Pif A is a transversal of P.

Fact: There is a natural bijection
{ idempotents in T,, or rank r}  <—pjjection— {(P,A) €I x J: A L P}
ep.4 with image A and kernel P — (P,A) (forA L P)

Example
n=38,r=3withA L P being the pair 256 L 1247 | 35 | 68

Image
A =256

1 23 45 6 7 8
Kernel P =1247|35| 68 <2 v 52 5 6 2 6>—€P,A



Graham—Houghton Graph
Letn,r e Nwith1 <r <n.
» [ = {partitions of [n] into r non-empty sets}
» J = {r-element subsets of [n]}
For P € Iand A € J write A L P if A is a transversal of P.

The Graham—Houghton Graph I, is the bipartite graph with
Vertices: 1 U J, Edges: P~A&<ALP

Note:  {edges of I',} <—pjjeciion— { idempotents in T}, or rank r}



Graham—Houghton Graph
Letn,r e Nwith1 <r <n.
» [ = {partitions of [n] into r non-empty sets}
» J = {r-element subsets of [n]}
For P € Iand A € J write A L P if A is a transversal of P.

The Graham—Houghton Graph I, is the bipartite graph with
Vertices: 1 U J, Edges: P~A&<ALP

Note:  {edges of I',} <—pjjeciion— { idempotents in T}, or rank r}

Example
With n = 4 the graph I'; is below (note that it is connected).




Singular squares
(P,Q,A,B) € I x I x J x J is a square if
{A,B} L {P,Q}.

A square (P, O, A, B) is singular if
{epa,epp,e0a,epp} is a subsemigroup of T),.



Singular squares

{A,B} L {P,Q}.

(P,Q,A,B) € I x I x J x J is a square if A
A square (P, O, A, B) is singular if

{epa,epp,e0a,epp} is a subsemigroup of T),. P
Example: Withn =4 and r = 2.

A=14 B=23

1 2 3 4 1 2 3

P = 12|34 <l 1 4 4) <2 2 3

1 2 3 4 1 2 3

Q= 1324 (1 4 1 4> <3 2 3




Singular squares

(P,Q,A,B) € I x I x J x J is a square if A
{A, B} L {P,0}.
A square (P, O, A, B) is singular if
{epa,epp,e0a,epp} is a subsemigroup of T),. P
Example: Withn =4 and r = 2.
A=14 B=23

P=12/34

1 2
1 1
1 2 3 4
Q= 1324 (1414)
1

AW
NN
N———

1 2 3 4
2 2 3 3
1 2 3 4
32 3 2

3
5 2) ¢ {era erp e, €0}

~

. . 2
Not singular since ep seg p = 3 3



Singular squares

{A,B} L {P,Q}.

(P,Q,A,B) € I x I x J x J is a square if A
A square (P, O, A, B) is singular if

{epa,epp,e0a,epp} is a subsemigroup of T),. P
Example: Withn =4 and r = 2.

A=24 B =134

1 2 3 4 1 2 3

P = 14|23 <4 2 2 4) <4 3 3

1 2 3 4 1 2 3

Q=4[123 (2 2 2 4> <3 3 3




Singular squares

(P,Q,A,B) € I x I x J x J is a square if A
{A, B} L {P,0}.

A square (P, O, A, B) is singular if

{epa,epp,e0a,epp} is a subsemigroup of T),. P
Example: Withn =4 and r = 2.

A=24 B =134

1 2 3 4 1 2 3

P = 14|23 <4 2 2 4) <4 3 3

1 2 3 4 1 2 3

Q=4[123 (2 2 2 4> <3 3 3

Is a singular square as {ep 4, ep 5, €9 4, €05} is closed.



Graham—Houghton 2-complex GH,

Letn,r e Nwith1 <r <n.
1-skeleton: the Graham-Houghton graph I,
I = {partitions of [n] into r non-empty sets}

J = {r-element subsets of [n]}

Vertices: U J, Edges: P~A=ALP

2-cells
A B
< (P,Q,A,B) is a singular square
P Q

Let H, = m(GH,) denote the fundamental group GH,.
Roughly speaking: H, = ( rank r idempotents | singular squares )

generating symbols defining relations



Graham—Houghton 2-complex GH,

Letn,r e Nwith1 <r <n.
1-skeleton: the Graham-Houghton graph I,
I = {partitions of [n] into r non-empty sets}

J = {r-element subsets of [n]}

Vertices: U J, Edges: P~A<A L P

2-cells
A B
<  (P,Q,A,B) is a singular square
P Q

Let H, = 7 (GH,) denote the fundamental group GH,..

Roughly speaking: H, 2 ( rank r idempotents | singular squares )

generating symbols defining relations



Main theorem

Example: The Graham—Houghton complex G, for 7y:

41123

14| 23

13| 24

1]234



Main theorem

Example: The Graham—Houghton complex G, for 7y:

Theorem (RG and Ruskuc (2012))

Letn,r € Nwith 1 <r <n — 2, and let GH, be the Graham—Houghton
complex built from the rank r idempotents in 7,,. Then the fundamental
group H, = m(GH,) is isomorphic to the symmetric group S,.



Main theorem

Example: The Graham—Houghton complex G, for 7y:

Theorem (RG and Ruskuc (2012))

Letn,r € Nwith 1 <r <n — 2, and let GH, be the Graham—Houghton
complex built from the rank r idempotents in 7,,. Then the fundamental
group H, = m(GH,) is isomorphic to the symmetric group S,.

[Note: When r = n — 1 = T, has no squares = H,,_ is the fundamental
group of a graph, and hence is a free group.]

» Why did we prove this?
» How did we prove this?



Idempotent generated semigroups

S - semigroup, E = E(S) - idempotents e = ¢* of §

Definition. S is idempotent generated if (E(S)) = S



Idempotent generated semigroups

S - semigroup, E = E(S) - idempotents e = ¢* of §

Definition. S is idempotent generated if (E(S)) = S

» Many natural examples

>

>

Howie (1966) - T, \ S,, the non-invertible transformations;

Erdos (1967) - singular part of M, (F), semigroup of all n X n matrices
over a field IF;

Putcha (2006) - conditions for a reductive linear algebraic monoid to have
the same property;

Fountain and Lewin (1992) - endomorphism monoids of finite
dimensional independence algebras;

East (2011) - P, \ Sx, the non-invertible elements of the partition monoid.



Idempotent generated semigroups

S - semigroup, E = E(S) - idempotents e = ¢* of §

Definition. S is idempotent generated if (E(S)) = S

» Many natural examples

> Howie (1966) - T, \ S,, the non-invertible transformations;

» Erdos (1967) - singular part of M, (IF), semigroup of all n X n matrices
over a field [F;

> Putcha (2006) - conditions for a reductive linear algebraic monoid to have
the same property;

» Fountain and Lewin (1992) - endomorphism monoids of finite
dimensional independence algebras;

» East (2011) - P, \ Sa, the non-invertible elements of the partition monoid.

» Idempotent generated semigroups are “general”
» Every semigroup S embeds into an idempotent generated semigroup.



Free idempotent generated semigroups

S - semigroup, E = E(S) - idempotents of S

Nambooripad (1979): The set of idempotents E carries a certain abstract
structure, that of a biordered set.

Big idea: Fix a biorder E and investigate those semigroups whose
idempotents carry this fixed biorder structure.



Free idempotent generated semigroups

S - semigroup, E = E(S) - idempotents of S

Nambooripad (1979): The set of idempotents E carries a certain abstract
structure, that of a biordered set.

Big idea: Fix a biorder E and investigate those semigroups whose
idempotents carry this fixed biorder structure.

Within this family there is a unique free object IG(E) which is the
semigroup defined by presentation:

IGE) =(E|e-f=¢f (e.f €E, {e.f}n{ef fe} #0))

IG(E) is called the free idempotent generated semigroup on E.



First steps towards understanding IG(E)

Theorem (Easdown (1985))

Let S be an idempotent generated semigroup with E = E(S). Then IG(E) is
an idempotent generated semigroup and there is a surjective homomorphism
¢ : IG(E) — S which is bijective on idempotents.

Conclusion. It is important to understand /G(E) if one is interested in
understanding an arbitrary idempotent generated semigroups.



T

/I

S=<E(S) >

/N

bijection

A\ 4
m




Maximal subgroups of IG(E)

Question. Which groups can arise as maximal subgroups of a free
idempotent generated semigroups?



IG(E) = E(S)
&] \ S
. [ ]
. [ ]
H? .
. [ ]
. /I
E & > E

bijection



Maximal subgroups of IG(E)

Question. Which groups can arise as maximal subgroups of a free
idempotent generated semigroups?

» Work of Pastijn (1977, 1980), Nambooripad and Pastijn (1980),
McElwee (2002) led to a conjecture that all these groups must be free
groups.



Maximal subgroups of IG(E)

Question. Which groups can arise as maximal subgroups of a free
idempotent generated semigroups?

» Work of Pastijn (1977, 1980), Nambooripad and Pastijn (1980),
McElwee (2002) led to a conjecture that all these groups must be free
groups.

» Brittenham, Margolis & Meakin (2009) - gave the first counterexample
to this conjecture by showing Z @ Z can arise.



Maximal subgroups of IG(E)

Question. Which groups can arise as maximal subgroups of a free
idempotent generated semigroups?

» Work of Pastijn (1977, 1980), Nambooripad and Pastijn (1980),
McElwee (2002) led to a conjecture that all these groups must be free
groups.

» Brittenham, Margolis & Meakin (2009) - gave the first counterexample
to this conjecture by showing Z @ Z can arise.

» RG & Ruskuc (2012) proved that every group is a maximal subgroup of
some free idempotent generated semigroup.

New question

What can be said about maximal subgroups of IG(E) where E = E(S) for
semigroups S that arise in nature?



IG(E) for E = E(T,,)

Let E = E(T,) where T, is the full transformation monoid.
Howie (1966): (E(T,)) = (T, \ S,) U {id}.

Easdown (1985): We may identify E = E(T,,) = E(IG(E)).
Fix an idempotent transformation € € T, of rank r.

Problem: Identify the maximal subgroup H, of

IGE)=(E|e-f=¢f (e.f €E, {e.f} N {ef.fe} #0))

containing e.

General fact: H,. is a homomorphic preimage of the corresponding maximal
subgroup of T}, namely the symmetric group S,.



IG(E)




Reinterpreting our result

Theorem (Brittenham, Margolis & Meakin (2009))
Let S be a regular semigroup and set E = E(S). Then

{ maximal subgroups of IG(E) } = { fundamental groups of
Graham-Houghton complexes of S }

So, our result on fundamental groups of GH-complexes of T,, says:

Theorem (RG and Ruskuc (2012))

Let T, be the full transformation semigroup, let E be its set of idempotents,
and let € € E be an arbitrary idempotent with image size r (1 < r < n —2).
Then the maximal subgroup H, of the free idempotent generated semigroup
IG(E) containing e is isomorphic to the symmetric group S,.



IG(E)




Main theorem

Theorem (RG and Ruskuc (2012))

Letn,r € Nwith 1 <r <n — 2, and let GH, be the Graham—Houghton
complex built from the rank r idempotents in 7,,. Then the fundamental
group H, = 7 (GH,) is isomorphic to the symmetric group S,.

» Why did we prove this?

» How did we prove this?



Computing the group H,
The group H, = 71 (GH,) is then defined by the presentation with generators
F={fps : Pecl,AcJ,ALP}
and the defining relations
fea=1 ((P,A) € T aspanning tree of T',)
fgj fes :féj‘ fo.s ((P,Q,A, B) asingular square).

Observation: This presentation has lots of generators so if this is a
presentation for S, then it must have a lot of redundancy.

Idea: Our hope is to show this is a presentation for S,. So, ultimately each
generator fp 4 will need to be equal (in the group defined by the presentation)
to some element of S,.

So, foreachP € I, A € J, A L P we want to define an element A\(P,A) € S,
which we aim to prove is the element represented by the generator fp 4.



The label function
For each set A and partition P with A L P write:

A:{a17"'7ar}7 aj <"'<ar7
P={Py,...,P.}, minP; < --- < minP,.

Then write

P1 Pg Pr 1 2 r
, AP,A) = €8S,
<a[1 a, ... 4 > ( ) <ll lz ce lr>



The label function
For each set A and partition P with A L P write:

A={ay,...,a;}, a1 < -+ < ay,
P={Py,...,P.}, minP; < --- < minP,.
Then write
P1 Pg Pr 1 2 ... r
, AP,A) = €S,
<Cl[l a, ... a1,> ( ) <ll lz lr

Example: n =7,r =4
P P P P
P={{1},{2,3,6},{4,7},{5}}
MRA%:G

=~ N
[\

A={1 4 ,5 .6 }

ar a2 az a4



Singular squares and labels

Fact: We can read off the singular squares using \. A square

(P, Q, A, B) is singular < \(P,A)~'\(P,B) = \(Q,A)"'\(Q, B).

We can think of A as labelling each edge of the Graham—Houghton graph.

Example

AP, A)INP, B) = MQ, A)"'\Q, B).

1456 1567
(24 3)

23) (23 4)
(34)

1]23547]6 11236 |47 [5

(23)7'34 =(243)=(243)7'(234)



First we prove the group H, is defined by the presentation
Generators: F = {fps : P€l,A€J, ALP}
Relations:
(D) fp,a = 1 whenever A(P,A) =1 A(P,A) A(P,B)

() fp4 fo.8 = fg.4 fo.8 Where (P, Q,A,B) is a
square: A\(P,A)~'\(P,B) = A(Q,A)~'\(Q, B). AQ,4) A(Q, B)



First we prove the group H, is defined by the presentation
Generators: F = {fps : P€l,A€J, ALP}
Relations:
(D) fp,a = 1 whenever A(P,A) =1 A(P,A) A(P,B)
() fp4 fo.8 = fg.4 fo.8 Where (P, Q,A,B) is a
square: A(P,A)~'\(P,B) = \(0,A)~'\(Q,B). @A) AQ.B)

Basic idea of the proof that H, = S,

Use Tietze transformations to transform the presentation above into the
classical Coxeter presentation for S,.



First we prove the group H, is defined by the presentation
Generators: F = {fps : P€l,A€J, ALP}
Relations:
(D) fp,a = 1 whenever A(P,A) =1 A(P,A) A(P,B)
() fp4 fo.8 = fg.4 fo.8 Where (P, Q,A,B) is a
square: A(P,A)~'\(P,B) = \(0,A)~'\(Q,B). @A) AQ.B)

Basic idea of the proof that H, = S,

Use Tietze transformations to transform the presentation above into the
classical Coxeter presentation for S,.

1. Eliminate all generators fp 4 with A(P,A) # (i i + 1) expressing them
as products of generators with labels (i i + 1).



First we prove the group H, is defined by the presentation
Generators: F = {fps : P€l,A€J, ALP}

Relations:
() fpa = 1 whenever A(P,A) = 1 A(P,A) A(P,B)

() fp4 fo.8 = fg.4 fo.8 Where (P, Q,A,B) is a
square: A\(P,A)~'\(P,B) = A(Q,A)~'\(Q, B). AQ,4) A(Q, B)

Basic idea of the proof that H, = S,
Use Tietze transformations to transform the presentation above into the
classical Coxeter presentation for S,.
1. Eliminate all generators fp 4 with A(P,A) # (i i + 1) expressing them
as products of generators with labels (i i + 1).
2. Show thatif A\(P,A) = (ii+ 1) = A(Q, B) then fp 4 = fo s isa
consequence of (I) & (II).



First we prove the group H, is defined by the presentation
Generators: F = {fps : P€l,A€J, ALP}

Relations:
() fpa = 1 whenever A(P,A) = 1 A(P,A) A(P,B)

() fp4 fo.8 = fg.4 fo.8 Where (P, Q,A,B) is a
square: A\(P,A)~'\(P,B) = A(Q,A)~'\(Q, B). AQ,4) A(Q, B)

Basic idea of the proof that H, = S,

Use Tietze transformations to transform the presentation above into the
classical Coxeter presentation for S,.

1. Eliminate all generators fp 4 with A(P,A) # (i i + 1) expressing them
as products of generators with labels (i i + 1).

2. Show thatif A\(P,A) = (ii+ 1) = A(Q, B) then fp 4 = fo s isa
consequence of (I) & (II).

3. We are left with a presentation with generators in one-one
correspondence with the Coxeter generators of S,. To finish the proof
we show that the Coxeter relations are consequences.



1)

Table of labels

(12) (132)

Spot singular squares
()'23)=(127"(132)

Table of generating symbols

IxJ A

B
P fpa frp
Q foa fo.B

Deduce relations

fra=1, and foafre= foB




Spotting relations from Coxeter presentation for S,

(81, gralg =1, gigi=gg (i—j>1), &g18 =g18gi+1)
Example: Case n = 7, r = 4 finding a relation g;g; = g;i.

A B C

1256 2356 2345
P=1347]2[5]|6 () (12)
Q=137[2|46|5 (34) (12)(34) (12)

R=127|3|46]|5 (3 4) ()




Spotting relations from Coxeter presentation for S,

(81, gralg =1, gigi=gg (i—j>1), &g18 =g18gi+1)
Example: Case n = 7, r = 4 finding a relation g;g; = g;i.

A B C
1256 2356 2345

P=1347|2]5|6 () (12)

Q=137[2[46(5 (34) |(12)34)| (12

R=127|3[46]5 (3 4) ()

Deductions: fo 4 fr.8 = fo.8 =fo,c fre: Joar =1rB. JfPB=foc
fQAA fP,B :fP,BfQ,A Where )\(P.,B) = (] 2) and )\(Q.A) = (3 4)



Related results and future work

Analogous results have since been proved for:

» Endomorphism monoids of free G-acts

@ I. Dolinka, V. Gould and D. Yang,
Free idempotent generated semigroups and endomorphism monoids of free G-acts.
Journal of Algebra. 429 (2015), 133-176.

» The full linear monoid M, (IF)

@ I. Dolinka and R. D. Gray,
Maximal subgroups of free idempotent generated semigroups over the full linear
monoid.
Trans. Amer. Math. Soc. 366(1) (2014), 419-455.

Note: For the full linear monoid we currently only know the groups for
r < % (we get the general linear group GL,(IF)) but we do not know what the
groups are for higher values of r.



