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A joke...

Why was the maths book feeling
depressed?



A joke...

Why was the maths book feeling
depressed?

Because it had so many problems.

(C. A. Carvalho (2015))



Generators and relations for symmetric groups

S4 - symmetric group on {1, 2, 3, 4}.

A generating set

S4 = 〈(1 2), (2 3), (3 4)〉

Some relations between these
generators

(i) Elements have order 2:
(1 2)(1 2) = ()

(ii) Non-overlapping commute:
(1 2)(3 4) = (3 4)(1 2)

(iii) Partially overlapping:
(1 2)(2 3)(1 2) = (2 3)(1 2)(2 3)
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Coxeter presentation

Sr - the symmetric group on [r] = {1, 2, . . . , r}.

Sr = 〈(1 2), (2 3), . . . , (r − 1 r)〉

Sr is isomorphic to the group defined by the group presentation:

〈 g1, . . . , gr−1 | g2
i = 1

gigj = gjgi |i− j| > 1
gigi+1gi = gi+1gigi+1 〉

I This is called the Coxeter presentation for Sr.
I It defines Sr in terms of the generating set consisting of Coxeter

transpositions (i i + 1) where

generating symbol gi ←→ the generator (i i + 1)



Aim of my talk

Let n, r ∈ N with 1 ≤ r ≤ n.
Tn - full transformation monoid, Sr - symmetric group.

I I will give another finite presentation for Sr.
I This presentation will have:

I Generating symbols ←bijection→ rank r idempotents of Tn
I Relations obtained from certain quadruples of idempotents.

I aim to explain:

1. What we proved: The main theorem of the article

R. Gray and N. Ruškuc, Maximal subgroups of free idempotent generated
semigroups over the full transformation monoid.
Proc. London Math. Soc. 104 (2012) 997–1018.

2. Why we proved it: Motivated by free idempotent generated semigroups.
3. How we proved it: Finding an encoding of the Coxeter presentation in

the combinatorics of kernels and images of idempotent transformations.



Aim of my talk

Let n, r ∈ N with 1 ≤ r ≤ n.
Tn - full transformation monoid, Sr - symmetric group.

I I will give another finite presentation for Sr.
I This presentation will have:

I Generating symbols ←bijection→ rank r idempotents of Tn
I Relations obtained from certain quadruples of idempotents.

I aim to explain:

1. What we proved: The main theorem of the article

R. Gray and N. Ruškuc, Maximal subgroups of free idempotent generated
semigroups over the full transformation monoid.
Proc. London Math. Soc. 104 (2012) 997–1018.

2. Why we proved it: Motivated by free idempotent generated semigroups.
3. How we proved it: Finding an encoding of the Coxeter presentation in

the combinatorics of kernels and images of idempotent transformations.



Idempotent, sets and partitions

Idempotents in Tn

e ∈ Tn is an idempotent⇔ e acts as identity on its image im(e).

ε =

(
1 2 3 4
4 2 2 4

)
, im(ε) = {2, 4} with 2ε = 2, 4ε = 4, and ε2 = ε.

β =

(
1 2 3 4
4 4 2 2

)
, im(β) = {2, 4} with 2β 6= 2, and β2 6= β.

Images and kernels
Let α ∈ Tn with rank(α) = |im(α)| = r.

Associated with α are:
A set im(α) of size r.
A partition ker(α) = {mα−1 : m ∈ im(α)} of [n] into r non-empty parts.

Example: α =

(
1 2 3 4 5 6
5 3 3 5 2 3

)
im(α) = {2, 3, 5}, ker(α) = {{1, 4}, {2, 3, 6}, {5}}.
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Idempotent, sets and partitions
Let n, r ∈ N with 1 ≤ r ≤ n.

I I = {partitions of [n] into r non-empty sets}
I J = {r-element subsets of [n]}

For P ∈ I and A ∈ J write A ⊥ P if A is a transversal of P.

Fact: There is a natural bijection

{ idempotents in Tn or rank r} ←bijection→ {(P,A) ∈ I × J : A ⊥ P}
eP,A with image A and kernel P ←→ (P,A) (for A ⊥ P)

Example
n = 8, r = 3 with A ⊥ P being the pair 256 ⊥ 1247 | 35 | 68

Image
A = 256

Kernel P = 1247 | 35 | 68
(

1 2 3 4 5 6 7 8
)

= eP,A
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Let n, r ∈ N with 1 ≤ r ≤ n.

I I = {partitions of [n] into r non-empty sets}
I J = {r-element subsets of [n]}

For P ∈ I and A ∈ J write A ⊥ P if A is a transversal of P.

Fact: There is a natural bijection
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Image
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Graham–Houghton Graph
Let n, r ∈ N with 1 ≤ r ≤ n.

I I = {partitions of [n] into r non-empty sets}
I J = {r-element subsets of [n]}

For P ∈ I and A ∈ J write A ⊥ P if A is a transversal of P.

The Graham–Houghton Graph Γr is the bipartite graph with
Vertices: I ∪ J, Edges: P ∼ A⇔ A ⊥ P

Note: {edges of Γr} ←bijection→ { idempotents in Tn or rank r}

Example
With n = 4 the graph Γ2 is below (note that it is connected).
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Singular squares

(P,Q,A,B) ∈ I × I × J × J is a square if
{A,B} ⊥ {P,Q}.

A square (P,Q,A,B) is singular if
{eP,A, eP,B, eQ,A, eQ,B} is a subsemigroup of Tn.
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A = 14 B = 23

P = 12|34
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1 2 3 4
1 1 4 4

) (
1 2 3 4
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)

Q = 13|24
(

1 2 3 4
1 4 1 4
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1 2 3 4
3 2 3 2
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6∈ {eP,A, eP,B, eQ,A, eQ,B}.
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Singular squares

(P,Q,A,B) ∈ I × I × J × J is a square if
{A,B} ⊥ {P,Q}.

A square (P,Q,A,B) is singular if
{eP,A, eP,B, eQ,A, eQ,B} is a subsemigroup of Tn.

Example: With n = 4 and r = 2.

A = 24 B = 34

P = 14|23
(

1 2 3 4
4 2 2 4

) (
1 2 3 4
4 3 3 4

)

Q = 4|123
(

1 2 3 4
2 2 2 4

) (
1 2 3 4
3 3 3 4

)
Is a singular square as {eP,A, eP,B, eQ,A, eQ,B} is closed.



Graham–Houghton 2-complex GHr

Let n, r ∈ N with 1 ≤ r ≤ n.

1-skeleton: the Graham–Houghton graph Γr
I = {partitions of [n] into r non-empty sets}
J = {r-element subsets of [n]}

Vertices: I ∪ J, Edges: P ∼ A⇔ A ⊥ P

2-cells

⇔ (P,Q,A,B) is a singular square

Let Hr = π1(GHr) denote the fundamental group GHr.
Roughly speaking: Hr ∼= 〈 rank r idempotents︸ ︷︷ ︸

generating symbols

| singular squares︸ ︷︷ ︸
defining relations

〉
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Main theorem

Example: The Graham–Houghton complex GH2 for T4:

Theorem (RG and Ruškuc (2012))
Let n, r ∈ N with 1 ≤ r ≤ n− 2, and let GHr be the Graham–Houghton
complex built from the rank r idempotents in Tn. Then the fundamental
group Hr = π1(GHr) is isomorphic to the symmetric group Sr.

[Note: When r = n− 1⇒ Γr has no squares⇒ Hn−1 is the fundamental
group of a graph, and hence is a free group.]

I Why did we prove this?
I How did we prove this?
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Idempotent generated semigroups

S - semigroup, E = E(S) - idempotents e = e2 of S

Definition. S is idempotent generated if 〈E(S)〉 = S

I Many natural examples
I Howie (1966) - Tn \ Sn, the non-invertible transformations;
I Erdös (1967) - singular part of Mn(F), semigroup of all n× n matrices

over a field F;
I Putcha (2006) - conditions for a reductive linear algebraic monoid to have

the same property;
I Fountain and Lewin (1992) - endomorphism monoids of finite

dimensional independence algebras;
I East (2011) - Pn \ Sn, the non-invertible elements of the partition monoid.

I Idempotent generated semigroups are “general”
I Every semigroup S embeds into an idempotent generated semigroup.
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Free idempotent generated semigroups

S - semigroup, E = E(S) - idempotents of S

Nambooripad (1979): The set of idempotents E carries a certain abstract
structure, that of a biordered set.

Big idea: Fix a biorder E and investigate those semigroups whose
idempotents carry this fixed biorder structure.

Within this family there is a unique free object IG(E) which is the
semigroup defined by presentation:

IG(E) = 〈E | e · f = ef (e, f ∈ E, {e, f} ∩ {ef , fe} 6= ∅) 〉

IG(E) is called the free idempotent generated semigroup on E.
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First steps towards understanding IG(E)

Theorem (Easdown (1985))
Let S be an idempotent generated semigroup with E = E(S). Then IG(E) is
an idempotent generated semigroup and there is a surjective homomorphism
φ : IG(E)→ S which is bijective on idempotents.

Conclusion. It is important to understand IG(E) if one is interested in
understanding an arbitrary idempotent generated semigroups.





Maximal subgroups of IG(E)

Question. Which groups can arise as maximal subgroups of a free
idempotent generated semigroups?
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Question. Which groups can arise as maximal subgroups of a free
idempotent generated semigroups?

I Work of Pastijn (1977, 1980), Nambooripad and Pastijn (1980),
McElwee (2002) led to a conjecture that all these groups must be free
groups.

I Brittenham, Margolis & Meakin (2009) - gave the first counterexample
to this conjecture by showing Z⊕ Z can arise.

I RG & Ruskuc (2012) proved that every group is a maximal subgroup of
some free idempotent generated semigroup.

New question
What can be said about maximal subgroups of IG(E) where E = E(S) for
semigroups S that arise in nature?



Maximal subgroups of IG(E)

Question. Which groups can arise as maximal subgroups of a free
idempotent generated semigroups?

I Work of Pastijn (1977, 1980), Nambooripad and Pastijn (1980),
McElwee (2002) led to a conjecture that all these groups must be free
groups.

I Brittenham, Margolis & Meakin (2009) - gave the first counterexample
to this conjecture by showing Z⊕ Z can arise.

I RG & Ruskuc (2012) proved that every group is a maximal subgroup of
some free idempotent generated semigroup.

New question
What can be said about maximal subgroups of IG(E) where E = E(S) for
semigroups S that arise in nature?



Maximal subgroups of IG(E)

Question. Which groups can arise as maximal subgroups of a free
idempotent generated semigroups?

I Work of Pastijn (1977, 1980), Nambooripad and Pastijn (1980),
McElwee (2002) led to a conjecture that all these groups must be free
groups.

I Brittenham, Margolis & Meakin (2009) - gave the first counterexample
to this conjecture by showing Z⊕ Z can arise.

I RG & Ruskuc (2012) proved that every group is a maximal subgroup of
some free idempotent generated semigroup.

New question
What can be said about maximal subgroups of IG(E) where E = E(S) for
semigroups S that arise in nature?



IG(E) for E = E(Tn)

Let E = E(Tn) where Tn is the full transformation monoid.

Howie (1966): 〈E(Tn)〉 = (Tn \ Sn) ∪ {id}.

Easdown (1985): We may identify E = E(Tn) = E(IG(E)).
Fix an idempotent transformation ε ∈ Tn of rank r.

Problem: Identify the maximal subgroup Hε of

IG(E) = 〈E | e · f = ef (e, f ∈ E, {e, f} ∩ {ef , fe} 6= ∅) 〉

containing ε.

General fact: Hε is a homomorphic preimage of the corresponding maximal
subgroup of Tn, namely the symmetric group Sr.





Reinterpreting our result

Theorem (Brittenham, Margolis & Meakin (2009))
Let S be a regular semigroup and set E = E(S). Then

{ maximal subgroups of IG(E) } = { fundamental groups of
Graham–Houghton complexes of S }

So, our result on fundamental groups of GH-complexes of Tn says:

Theorem (RG and Ruškuc (2012))
Let Tn be the full transformation semigroup, let E be its set of idempotents,
and let ε ∈ E be an arbitrary idempotent with image size r (1 ≤ r ≤ n− 2).
Then the maximal subgroup Hε of the free idempotent generated semigroup
IG(E) containing ε is isomorphic to the symmetric group Sr.





Main theorem

Theorem (RG and Ruškuc (2012))
Let n, r ∈ N with 1 ≤ r ≤ n− 2, and let GHr be the Graham–Houghton
complex built from the rank r idempotents in Tn. Then the fundamental
group Hr = π1(GHr) is isomorphic to the symmetric group Sr.

I Why did we prove this?
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Computing the group Hr

The group Hr = π1(GHr) is then defined by the presentation with generators

F = {fP,A : P ∈ I, A ∈ J, A ⊥ P},

and the defining relations

fP,A = 1 ((P,A) ∈ T a spanning tree of Γr)

f−1
P,A fP,B = f−1

Q,A fQ,B ((P,Q,A,B) a singular square).

Observation: This presentation has lots of generators so if this is a
presentation for Sr then it must have a lot of redundancy.

Idea: Our hope is to show this is a presentation for Sr. So, ultimately each
generator fP,A will need to be equal (in the group defined by the presentation)
to some element of Sr.

So, for each P ∈ I, A ∈ J, A ⊥ P we want to define an element λ(P,A) ∈ Sr

which we aim to prove is the element represented by the generator fP,A.



The label function
For each set A and partition P with A ⊥ P write:

A = {a1, . . . , ar}, a1 < · · · < ar,

P = {P1, . . . ,Pr}, min P1 < · · · < min Pr.

Then write(
P1 P2 . . . Pr

al1 al2 . . . alr

)
, λ(P,A) =

(
1 2 . . . r
l1 l2 . . . lr

)
∈ Sr.

Example: n = 7, r = 4
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Singular squares and labels

Fact: We can read off the singular squares using λ. A square

(P,Q,A,B) is singular⇔ λ(P,A)−1λ(P,B) = λ(Q,A)−1λ(Q,B).

We can think of λ as labelling each edge of the Graham–Houghton graph.

Example



First we prove the group Hr is defined by the presentation
Generators: F = {fP,A : P ∈ I, A ∈ J, A ⊥ P}

Relations:
(I) fP,A = 1 whenever λ(P,A) = 1

(II) f−1
P,A fP,B = f−1

Q,A fQ,B where (P,Q,A,B) is a
square: λ(P,A)−1λ(P,B) = λ(Q,A)−1λ(Q,B).

λ(P,A) λ(P,B)

λ(Q,A) λ(Q,B)

Basic idea of the proof that Hr
∼= Sr

Use Tietze transformations to transform the presentation above into the
classical Coxeter presentation for Sr.

1. Eliminate all generators fP,A with λ(P,A) 6= (i i + 1) expressing them
as products of generators with labels (i i + 1).

2. Show that if λ(P,A) = (i i + 1) = λ(Q,B) then fP,A = fQ,B is a
consequence of (I) & (II).

3. We are left with a presentation with generators in one-one
correspondence with the Coxeter generators of Sr. To finish the proof
we show that the Coxeter relations are consequences.
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Spotting relations from Coxeter presentation for Sr

〈g1, . . . , gr−1 | g2
i = 1, gigj = gjgi (|i− j| > 1), gigi+1gi = gi+1gigi+1〉

Example: Case n = 7, r = 4 finding a relation gigj = gjgi.

Deductions: fQ,A fP,B = fQ,B = fQ,C fR,B, fQ,A = fR,B, fP,B = fQ,C

∴ fQ,A fP,B = fP,B fQ,A where λ(P,B) = (1 2) and λ(Q,A) = (3 4).
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Related results and future work

Analogous results have since been proved for:

I Endomorphism monoids of free G-acts

I. Dolinka, V. Gould and D. Yang,
Free idempotent generated semigroups and endomorphism monoids of free G-acts.
Journal of Algebra. 429 (2015), 133–176.

I The full linear monoid Mn(F)

I. Dolinka and R. D. Gray,
Maximal subgroups of free idempotent generated semigroups over the full linear
monoid.
Trans. Amer. Math. Soc. 366(1) (2014), 419–455.

Note: For the full linear monoid we currently only know the groups for
r < n

3 (we get the general linear group GLr(F)) but we do not know what the
groups are for higher values of r.


