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in TX = Tn, where n = |S1|. Write

S1 = {α
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}, where α
0

= ι, the identity mapping in

Tn. We embed S in T ≤ PTZ where Z = X × {0, 1, 2, · · · , n},
where we also put αn = α

0

.

(x , i)·α = (x ·αi , 0) (0 ≤ i ≤ n), (x , i)·β = (x , i+1) (0 ≤ i ≤ n−1).

Then α = α2

and βn+1 = 0, the empty map.

Put λ = βnα; then λ = ι|X×{0}. Let γi = λβiα ∈ T ; then

(x , 0) · γi = (x , 0) · λβiα = (x , 0) · βiα = (x , i) · α = (x · αi , 0),

and so αi 7→ γi is a monomorphism of S1

into T .
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semigroup T that is a Rees matrix semigroup T = M(S) over S
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 group adjoined as a group of units.

In both 
ases, the 
ontaining semigroup T is regular, so any �nite

semigroup S embeds in a regular, �nite 2-generator semigroup T .

Also Margolis shows that any (�nite) n-generated semigroup

embeds in a (�nite) semigroup generated by n + 1 idempotents.

Hen
e any �nite semigroup S embeds in a �nite semigroup

generated by 3 idempotents.

Any semigroup (�nite or not) generated by 2 idempotents has at

most 6 idempotents and no 3-element 
hain. (Benzaken and Mayr)


hara
terised all su
h semigoups.
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De�nition

The MC sequen
e of non-negative integers begins m
0

= 0 and

mi > mi−1

is least su
h that there are no repeated di�eren
es

between any pairs in the sequen
e.

The 
onstru
tion for 2-generator semigroups has one prin
ipal

generator, α, 
ontaining 
opies of all mappings in S ≤ PTX ; dom α
and ran α 
onsist of n 
opies of X ; the se
ond generator β moves

us around that 
y
le. The domain intervals are sparsely pla
ed so

that produ
ts with multiple fa
tors of α are de�ned for one interval

at most. The MC property ensures that unwanted produ
ts do not

arise - the main subsemigroup of T is a Rees-matrix semigroup over

S with identity matrix.
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0
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.

The generator β simply 
y
les (mod m) around the 
opies of X :

(x , i) · β = (x , i + 1) (0 ≤ i ≤ m
2n−1

)

The prin
ipal generator α satis�es α2 = 0 and a
ts only on the

intervals X × {mn+j}:

(x ,mn+j ) · α = (x · αj ,mj) (0 ≤ j ≤ n− 1)

◮
Stru
ture of T = 〈α, β〉:
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Corollary

Let S be a �nite monoid with E (S) ≤ S . Then S may be

embedded in a �nite monoid T = 〈α, β〉 as above su
h that E (T )
is a submonoid satisfying the same semigroup identities as E (S).
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◮
The Ingredients

S1 = {α
0

, α
1

, · · · , αn−1

} is as before but S is now assumed

regular: let α′
i denote a �xed inverse of αi . The 
y
le β is formally

de�ned as before but, writing α′
i also as αi+n we de�ne the

prin
ipal generator α as the self-inverse mapping:

(x ,mt) · α = (x · αt±n,mt±n) (0 ≤ t ≤ 2n − 1)

subs
ript signs are + or − a

ording as 0 ≤ t ≤ n − 1 or

n ≤ t ≤ 2n − 1.
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Again T is a disjoint union, T = Hβ ∪ Dα ∪ T
1

but here

Dα = {βrαǫβs : ε = 1, 2} is a regular D−
lass with asso
iated

prin
ipal fa
tor isomorphi
 to the Brandt semigroup

M0[Z
2

,m,m, Im];

T
1

= {λi ,j ,k} ∪ {0} (0 ≤ i ≤ n − 1, 0 ≤ j , k ≤ m − 1}

E (T ) = E ∪ F ∪ {ι, 0} where

E = {λ(e, i , i) : e ∈ E (S), 0 ≤ i ≤ m − 1},

F = {βjα2β−j : 0 ≤ j ≤ m − 1}
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Corollary

(M
Alister, Stephen and Vernitski) Every �nite inverse semigroup

may be embedded is a �nite 2-generated semigroup that is an

inverse semigroup.



Benzaken, C. Mayr, H. C. Notion de demi-bande: demi-bandes

de type deux. (Fren
h) Semigroup Forum 10 (1975), no. 2,

115�128.

Evans, T. Embedding theorems for multipli
ative systems and

proje
tive geometries, Pro
. Ameri
an Math. So
, 3 (1952),

614-620.

Hall, T.E. Inverse and regular semigroups and amalgamation: a

brief survey, in Pro
. of the Symposium on regular semigroups,

Northern Illinois University, (1979), pp. 49-79.

Higgins, P.M., Te
hniques of semigroup theory, OUP, Oxford,

(1992).

Howie, J.M,. Fundamentals of semigroup theory, OUP, Oxford,

(1995).

Hunter, R.P., On Certain Two Generator Monoids, Semigroup

Forum, Vol. 47 (1993), 96-100.



Margolis, S., Maximal pseudovarieties of �nite monoids and

semigroups Russian Mathemati
s (Izvestiya VUZ. Matematika),

1995, 39:1.

M
Alister, D.B., J.B. Stephen and A. Vernitski, Embedding In
in a 2-generator inverse subsemigroup of In+2

, Pro
eedings of

the Edinburgh Mathemati
al So
iety (2002) 45, 1-4.

Mian, A. M. and Chowla, S. D. On the B
2

-sequen
es of Sidon,

Pro
. Nat. A
ad. S
i. India A14, 3-4, (1944).

Neumann, B.H. Embedding theorems for semigroups, Journal

of the London Math So
. 35 (1960), (184-192).

Sierpinski, W., Sur les suites in�nies de fon
tions dé�nies dans

les ensembles quel
onques, Fund. Math. 24 (1935), 209-212.


