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Reconstruction of Topology
Whether we can reconstruct the canonical topology of an
endomorphism monoid End (A) from its underlying abstract monoid
structure?

Automatic continuity
In which situations are homomorphisms or isomorphisms between
transformation monoids automatically continuous?
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Reconstruction of Topology
Whether we can reconstruct the canonical topology of a polymorphism
clone Pol (A) from its underlying abstract clone structure?

Automatic continuity
In which situations are homomorphisms or isomorphisms between
function clones automatically continuous?
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Transformation monoids

For a set A, we denote by O(1)
A := AA the set of all unary functions

on A and by
Tr (A)

the full transformation monoid on A.
The submonoids

M ≤ Tr (A)

are transformation monoids on A.
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If we equip A with the discrete topology, then Tr (A) is a product space
of A equipped with the Tychonoff topology.

Pointwise convergence topology
Let I be an index set. For every finite J ⊆ I and u : J → A:

U (J,u) := {f : I → A | f �J= u} .

A basis for the topology of AI can be expressed as

Bpwc = {∅} ∪
{

U (J,u) | J ⊆ I finite ∧ u ∈ AJ
}
.

Special case I = A, J =
{

a1
1, . . . ,a

m
1

}
, and we fix m elements

aj
0 = u

(
aj

1

)
∈ A for 1 ≤ j ≤ m.
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Topology on Tr (A)

A non-empty basic open set is:

U (J,u) =
{

f : A→ A | ∀ 1 ≤ j ≤ m : f
(
aj

1

)
= u

(
aj

1

)
= aj

0

}
.

Topological monoids are abstract monoids which carry a topology
under which the composition is continuous.
A transformation monoid M ≤ Tr (A) is considered as a topological
subspace of Tr (A).
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Given a relational structure A =

(
A,
(
RA
)

R∈Σ

)
, where RA ⊆ Aar(R) for

each R ∈ Σ.

Endomorphism monoids

A function f ∈ O(1)
A is called an endomorphism of A if

f : A homo.−→ A.

The set of all endomorphisms on A is denoted by

End (A) .
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Given a relational structure A =

(
A,
(
RA
)

R∈Σ

)
, where RA ⊆ Aar(R) for

each R ∈ Σ.

Polymorphism

A function f ∈ O(k)
A := AAk

is called a polymorphism of A if

f : Ak homo.−→ A.

The set of all polymorphisms on A is denoted by

Pol (A) =
⋃

k∈N+

Pol(k) (A) .
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f ∈ O(k)
A ,ar

(
RA
)

= m

f ◦


a11

...
am1

 , · · · ,
a1k

...
amk


 =

 f (a11 . . . a1k )
. . .

f (am1 . . . amk )


3 3

RA RA

3

RA
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Topological closure

Remark
The submonoid M ≤ Tr (A) is closed ⇐⇒ M = End (A) for some
relational structure A with domain A.
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Definition (M.Bodirsky, M.Pinsker, A.Pongrácz)
A closed monoid M ≤ Tr (A) has reconstruction :⇐⇒ for every other
closed monoid M ′ ≤ Tr (B), if there exists a monoid isomorphism
between M and M ′, then there also exists a monoid isomorphism
between M and M ′ which is a homeomorphism.

Definition
A closed monoid M ≤ Tr (A) has automatic continuity :⇐⇒ every
monoid homomorphism from M into Tr (A) is continuous.

Corollary (D. Lascar (1991))
Any continuous isomorphism between closed subgroups of SA is a
homeomorphism.
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Definition (M.Bodirsky, M.Pinsker, A.Pongrácz)
A closed monoid M ≤ Tr (A) has automatic homeomorphicity :⇐⇒
every monoid isomorphism from M to a closed M ′ ≤ Tr (B) is a
homeomorphism.

Some monoids with automatic homeomorphicity:

Emb (N,=) ,Emb (Γ) ,End (Γ)

where Γ = Random graph.
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Definition (M.Bodirsky, M.Pinsker, A.Pongrácz)
A closed monoid M ≤ Tr (A) has automatic homeomorphicity :⇐⇒
every monoid isomorphism from M to a closed M ′ ≤ Tr (B) is a
homeomorphism.

Some monoids with automatic homeomorphicity:

Emb (N,=) ,Emb (Γ) ,End (Γ) ,End (Q, <) ,End (Q,≤)

where Γ = Random graph.

For groups, automatic continuity implies automatic homeomorphicity

Let A,B be countable. If Aut (A) has S.I.P., then

ξ : Aut (A)→ Aut (B)

is a homeomorphism.
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We want to investigate the automatic homeomorphicity of

End (Q,≤) End (Q, <)
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We want to investigate the automatic homeomorphicity of

End (Q,≤) End (Q, <) Pol (Q, <) & Pol (Q,≤)

Constants
For d ∈ Q

cd ∈ E := End (Q,≤)

where cd (x) := d .

An element c ∈ M ≤ O(1)
A is called a constant :⇐⇒

∀x , y ∈ A : c (x) = c (y) .

The set C = {g ∈ E : (∀f ∈ E) gf = g} is a definable subset of E .
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Proposition (M.Bodirsky, M.Pinsker, A.Pongrácz)
Let A be a structure such that Pol (A) contains all constant functions,
and ξ : Pol (A)→ D be a clone isomorphism to a clone of functions D.
Then ξ is open.
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Proposition
Let A be a structure such thatMA := End (A) contains all unary
constant operations, and ξ :MA →MB := End (B) be a monoid
isomorphism. Then ξ is open.
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Proposition
Let A be a structure such thatMA := End (A) contains all unary
constant operations, and ξ :MA →MB := End (B) be a monoid
isomorphism. Then ξ is open.

Let a,b ∈ A, and Ea,b = {f ∈MA | f (a) = b} = {f ∈MA | f ◦ ca = cb}
be a basic open set. Then, we show that ξ

(
Ea,b

)
is open

ξ
(
Ea,b

)
= {ξ (f ) | f ∈MA ∧ f ◦ ca = cb}
= {ξ (f ) | f ∈MA ∧ ξ (f ◦ ca) = ξ (cb)} (since ξ is inj.)
= {ξ (f ) | f ∈MA ∧ ξ (f ) ◦ ξ (ca) = ξ (cb)} (since ξ is a hom.)
= {g ∈MB | g ◦ ξ (ca) = ξ (cb)} (since ξ is surj.)
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Example

A = {0,1}

MA := {idA, c0, c1}

c0 (x) = 0

c1 (x) = 1

B = N

MB := {idB,e0,e1}

e0 (x) =

{
0 if x ≡ 0 (mod 2)

1 if x ≡ 1 (mod 2)

e1 (x) =

{
2 if x ≡ 0 (mod 2)

3 if x ≡ 1 (mod 2)

ξ :MA →MB does not map constants to constants.
U = {g ∈MA | g (0) = 0} = {idA, c0} and ξ[U] = {idB,e0} are
basic open sets inMA andMB, respectively.
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Lemma

Let S ≤
〈

AA, ◦
〉

and T ≤
〈

BB, ◦
〉

be transformation semigroups and
ξ : S → T be a semigroup homomorphism, whose im (ξ) ≤ T acts
transitively on B (by evaluation). That is, for all x , y ∈ B there exists
some fx ,y ∈ S such that ξ (fx ,y ) (x) = y. In these circumstances ξ maps
any constant operation c ∈ S to a constant operation on B.

Proof.
If c ∈ S is constant, =⇒ c ◦ f = c for all f ∈ S.
For x , y ∈ B : c ◦ fx ,y = c.
For x , y ∈ B : ξ (c) ◦ ξ (fx ,y ) = ξ (c ◦ fx ,y ) = ξ (c).
Evaluating at x ∈ B: ξ (c) (x) = ξ (c) ξ (fx ,y ) (x) = ξ (c) (y),
=⇒ ξ (c) is a constant function.
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Corollary

Let S ≤
〈

AA, ◦
〉

, T ≤
〈

BB, ◦
〉

and ξ : S → T be a semigroup
homomorphism. Suppose S contains at least one constant operation,
then the following facts are equivalent:

1 im (ξ) ≤ T acts transitively on B (by evaluation).
2 im (ξ) contains all unary constants on B.
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Lemma

Assume,
C ≤

〈
AA, ◦

〉
contains all constant operations,

D ≤ 〈BB, ◦〉 acts transitively,
ξ : C → D semigroup isomorphism,

then the image of any open subset of C under ξ is open in BB.
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Proof.
Let a,b ∈ A, and Ea,b = {f ∈ C | f (a) = b} = {f ∈ C | f ◦ ca = cb} be a
basic open set. Then, we show that ξ

(
Ea,b

)
is open

ξ
(
Ea,b

)
= {ξ (f ) | f ∈ C ∧ f ◦ ca = cb}
= {ξ (f ) | f ∈ C ∧ ξ (f ◦ ca) = ξ (cb)} (since ξ is inj.)
= {ξ (f ) | f ∈ C ∧ ξ (f ) ◦ ξ (ca) = ξ (cb)} (since ξ is a hom.)
= {g ∈ D | g ◦ ξ (ca) = ξ (cb)} (since ξ is surj.)
= {g ∈ D | g ◦ (cp) = cq} .

(for some constants p,q ∈ B, according to Lemma 5)

= Ep,q.
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Lemma
Assume,

Const1A ⊆ C ≤ 〈AA, ◦〉
D ≤ 〈BB, ◦〉 acts transitively
ξ : C → D semigroup isomorphism,

then ξ is continuous.

Corollary
Assume,

Const1A ⊆ C ≤ 〈AA, ◦〉
D ≤ 〈BB, ◦〉 acts transitively
ξ : C → D semigroup isomorphism,

then ξ is a homeomorphism, moreover, both C and D, contain all
constant respective unary operations.
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Clone

F ⊆ OA :=
⋃

k∈N+
O(k)

A is a clone (of operations) on A iff
1 JA ⊆ F
2 F is closed w.r.t. composition.

Definition
A function ξ : F → F ′ is a clone isomorphism iff

1 ξ is a bijection,
2 ξ respects the arities, i.e. ar (ξ(f )) = ar (f ) for all f ∈ F .
3 ∀ 1 ≤ j ≤ n; ξ

(
π

(n)
j

)
= π

(n)
j ∈ F ′,

4 for f ∈ F (k),g1, . . . ,gk ∈ F (m) we have

ξ (f ◦ (g1, . . . ,gk )) = ξ (f ) ◦ (ξ (g1) , . . . , ξ (gk ))
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Examples
1 JA Clone of all projections.
2 OA Clone of all operations.
3 Arbitratry intersections of clones are clones again.

Let F ⊆ OA. The clone generated by F is

〈F 〉OA
:=
⋂
{C is clone | F ⊆ C}

and it is the smallest clone containing F .
4 Pol (A) for some relational structure (A).
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If we equip A with the discrete topology, then O(n)
A is a product space of

A equipped with the product topology.

Pointwise convergence topology
Let I be an index set. For every finite J ⊆ I and u : J → A:

U (J,u) := {f : I → A | f �J= u} .

A basis for the topology of AI can be expressed as

Bpwc = {∅} ∪
{

U (J,u) | J ⊆ I finite ∧ u ∈ AJ
}
.

Special case I = An, J =
{(

a1
1, . . . ,a

1
n

)
, . . . , (am

1 , . . . ,a
m
n )
}

, and we fix

m elements aj
0 = u

(
aj

1, . . . ,a
j
n

)
∈ A for 1 ≤ j ≤ m.
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Lemma (φ is open)
Assume,

Const1A ⊆ C ≤ OA,
D ≤ OB,
φ : C → D clone isomorphism,
ξ := φ �C(1) semigroup homomorphism, such that im (ξ) acts
transitively on B.

Then, for all n > 0 φ[U] is open in BBn
for all open U ⊆ C(n).
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Lemma (φ maps any n-ary constant to an n-ary constant)
Assume,

Const1A ⊆ C ≤ OA,
D ≤ OB, clone
φ : C → D clone isomorphism,

Then, the restriction ξ := φ �C(1) maps unary constants to unary
constants and φ maps any n-ary constant to an n-ary constant

Proof

f ∈ O(1)
A constant,

⇐⇒ ∀x , y ∈ A, f (x) = f (y) ⇐⇒ f ◦ π(2)
1 = f ◦ π(2)

2 . Hence,
ξ (f ) ◦ π(2)

1 = ξ (f ) ◦ ξ
(
π

(2)
1

)
= ξ

(
f ◦ π(2)

1

)
= ξ

(
f ◦ π(2)

2

)
= ξ (f ) ◦ π(2)

2 .
=⇒ ξ (f ) is constant on B.
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Lemma (φ is open)
Assume,

Const1A ⊆ C ≤ OA,
D ≤ OB,
φ : C → D clone isomorphism,
ξ : C(1) → D(1) is the restriction of φ to the unary part of the clones
and monoid isomorphism.

Then, ξ is open and φ is open.

From last lemma we know

φ : Pol (Q,≤)
clone iso.−→ D is open
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We can apply the automatic homeomorphicity of End (Q, <) and
following proposition to show that

ξ : Pol (Q, <)
clone iso.−→ C′ is open
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We can apply the automatic homeomorphicity of End (Q, <) and
following proposition to show that

ξ : Pol (Q, <)
clone iso.−→ C′ is open

Proposition (32 BPP)
Let C be a topological clone on A (with the product topology) such
that C(1) acts transitively on A,
let ξ be an injective clone homomorphism from C to a topological
clone C′ (on another set B).

Suppose that the restriction ξ �C
′(1)

C(1) : C(1) → C′(1) is open, then so is ξ.
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Let C be a topological clone on A (with the product topology) such
that C(1) acts transitively on A,
let ξ be a clone isomorphism from C to a topological clone C′ (on
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Lemma (φ is continuous)
Assume,

Const1A ⊆ C ≤ OA,
D ≤ OB,
φ : C → D clone isomorphism,
ξ := φ �C(1) semigroup isomorphism, and suppose D(1) = im (ξ)
acts transitively on B.

Then, for all n > 0 φ−1[U] is open in AAn
for all open U ⊆ D(n), i.e. φ

is continuous.
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John K. Truss talk

θ : E := End (Q,≤) −→ Tr (Ω)

may be viewed as semigroup action of E on Ω.

Ω =
⋃
i∈I

Ωi

where Ωi =
{

ai
B | B ∈ [Q]ni

}
, [Q]ni := {A ⊆ Q | |A| = ni}

θ (g)
(
ai

B

)
= ai

gB if g ∈ G := Aut (Q,≤)

θ (f )
(
ai

B

)
= ai

fB if f ∈ M := Emb (Q,≤)

f ∈ E := End (Q,≤) with |fB| = B.
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θ is continuous and open

θ : End (Q, <)
inj.−→ M ′ ≤ Tr (Ω) is homeomorphism.
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Thank you :)
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