

EXAMINATION PAPER

Examination Session: May

2017

Year:

Exam Code:

MATH1031-WE01

Title:

Discrete Mathematics

Time Allowed:	2 hours	
Additional Material provided:	None	
Materials Permitted:	None	
Calculators Permitted:	Yes	Models Permitted: Casio fx-83 GTPLUS or Casio fx-85 GTPLUS.
Visiting Students may use diction	onaries: No	

Instructions to Candidates:	Credit will be given for the best FOUR All questions carry the same marks.	₹ answers.	
		Devision	

Revision:

r I	Page number	-	-	٦ ١
L	2 of 4			I
L	2 01 4			I
L				I
L		_	_	J

1. (i) Squares of a three by three grid are filled with three letters A, B or C, with the letters always arranged the correct way up. For example,

A	B	C		A	A	A
A	B	C	and	B	B	B
A	B	C		C	C	C

are valid but different configurations.

- (a) Find the total number of configurations of the three by three grid.
- (b) Find the number of configurations such that the grid contains only 2 A's.
- (c) Find the number of configurations with only 2 *A*'s such that the two *A*'s are not vertically or horizontally adjacent to each other. (The *A*'s **are** allowed to be diagonal adjacent to each other.)
- (d) Find the number of configurations containing at least one C.
- (ii) Solve the recurrence relation $a_0 = 1, a_1 = 2$ and

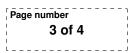
$$a_n = 8a_{n-1} - 12a_{n-2}$$
 for $n \ge 2$.

2. (i) (a) State the pigeon hole principle.

- (b) Show that in any set X of people, there are two members of X who have the same number of friends in X. [It is assumed that |X| is at least 2 and if x is a friend of x', then x' is a friend of x.]
- (ii) (a) A pixie can climb stairs one, two or three steps at a time. Find a recurrence relation for the number of distinct ways the pixie can climb a flight of n stairs.
 - (b) Find a closed form for the generating function for this recurrence relation [please do **not** find the coefficients of the generating function].
- 3. (i) (a) Write down a formula that expresses the Inclusion-Exclusion principle, being careful to define any notation you use.
 - (b) Recall that a derangement of a word is an arrangement of the letters in which no letter is in the correct position. Find the number of derangements of DURHAM.
 - (ii) Let d_n denote the number of derangments of a word of length n. Prove that d_n satisfies the following formula

$$d_1 = 0, \quad d_2 = 1, \quad d_n = (n-1)(d_{n-1} + d_{n-2}) \quad (n \ge 3).$$

(*Hint:* Either state and prove a general formula for d_n first and show that it satisfies the recurrence relation or explain the recurrence relation directly.)



- (i) A bank robber holds up a bank and demands n pounds in one pound and two pound coins. He also demands to know the number of ways the cashier can give him the money.
 - (a) Let a_n be the number of ways of making n pounds from one pound and two pound coins. Write down a generating function for the sequence a_n .
 - (b) Find the number of ways the bank robber can get 50 pounds. (*Hint:* $1 x^2 = (1 x)(1 + x)$)
 - (ii) Evaluate the sum $\sum_{k=0}^{\infty} \frac{k^2}{2^k}$.

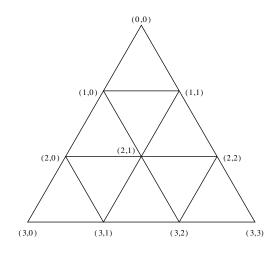
- 5. (a) Define the complete graph K_n , and the complete bipartite graph $K_{m,n}$. How many vertices does each graph have, and how many edges?
 - (b) Define the *n*-cube graph, Q_n , referring to the usual labels for the vertices. How many vertices does it have, and how many edges?

The girth g of a graph G is the smallest length of a cycle in G. If G has no cycles we say g = 0.

- (c) What is the girth of K_n ? of $K_{m,n}$? of Q_n ? Does this depend on n and m?
- (d) Write down Euler's formula for planar graphs, and also the two "handshaking" lemmas. Using these, show that if G = (V, E) is a simple, connected, planar graph with $g \neq 0$, then $|E| \leq \frac{g}{g-2}(|V|-2)$. (You may assume that the boundary of any face contains a cycle.)
- (e) For those values of n and m giving g ≠ 0, use the inequality you proved in (d) to find out:
 for which values of n could K_n be planar?
 for which values of n and m could K_{n,m} be planar?
 for which values of n could Q_n be planar?
- (f) By drawing planar representations, show that these graphs are in fact planar for the values of n and m you found in (e).
- (g) Draw a simple, connected graph, with $g \neq 0$ and $|E| \leq \frac{g}{g-2}(|V|-2)$, but which is *not* planar.

Exam code	1
MATH1031-WE01	
I. Contraction of the second se	1
	MATH1031-WE01

6. Consider the graph T_3 shown. It is one of a family of graphs $T_n = (V_n, E_n)$, each a pattern of triangles with n layers, and vertices labelled as shown.



- (a) Find $|V_n|$ and $|E_n|$. (You may use the fact that $\sum_{i=1}^k i = \frac{k(k+1)}{2}$.)
- (b) We have a planar representation of each T_n , so we can also let F_n be the set of its faces. Make a conjecture for $|F_n|$, and prove it by induction. (*Hint:* $|F_1| = 2$)
- (c) Confirm that your answers for (a) and (b) satisfy Euler's formula for planar graphs.
- (d) Draw the following subgraphs of T_3 . In each case the vertex set is still V_3 . G_1 is T_3 with edge (1,0)(1,1) removed. G_2 is T_3 with edges (2,1)(1,1), (2,1)(2,0) and (2,1)(3,2) removed. G_3 is T_3 with the edges of the cycle (1,0), (1,1), (2,2), (3,2), (3,1), (2,0), (1,0)removed.

Recall the definitions of an Euler circuit and a Hamilton cycle. Similarly, an *Euler trail* is a trail which uses each edge of the graph just once, and a *Hamilton path* is a path which visits each vertex just once. (Note that an Euler trail, or a Hamilton path, must run from u to v where $u \neq v$.)

- (e) Which of the G_i have a Hamilton cycle or a Hamilton path? Give the cycle if possible, otherwise the path, or if it has neither, try to explain briefly how you know this.
- (f) Which of the G_i have an Euler circuit or an Euler trail? (No need to explain, or to show the circuit or trail.)
- (g) Write down Euler's theorem relating Euler circuits to the degrees of vertices in a graph.
- (h) Write down a similar result for Euler trails, and prove it. You may use the theorem in (g).