

EXAMINATION PAPER

Examination Session: May

2017

Year:

Exam Code:

MATH1051-WE01

Title:

Analysis I

Time Allowed:	3 hours					
Additional Material provided:	None					
Materials Permitted:	None					
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.				
Visiting Students may use dictionaries: No						

Instructions to Candidates:	Credit will be given for your answers All questions carry the same marks.	to each ques	stion.

Revision:

r	Page number	
	2 of 4	
i		
L		

1. Find the limits of the following sequences as $n \to \infty$, or show that the limit does not exist. State explicitly every result that you use.

(i)

$$x_n = \frac{n^2 + e^{-n}}{5n^3},$$
(ii)

$$x_n = \frac{(n!)^2}{(n-1)!(n+1)!},$$
(iii)

$$x_n = n^{1 + \frac{1}{n}} (n - \sqrt{n^2 + 5})$$

- 2. (i) Find all real values of x for which $|2x + 1| \le |3x 6|$.
 - (ii) Using the standard triangle inequality $|x + y| \le |x| + |y|$, derive the following inequality for any pair of real numbers $a, b \in \mathbb{R}$:

$$||a| - |b|| \le |a - b|.$$

- 3. (a) Give the (ϵ, δ) -definition of continuity of a function $f : \mathbb{R} \to \mathbb{R}$ at a point $x \in \mathbb{R}$.
 - (b) Using quantifiers, give the precise logical (ϵ, δ) -formulation that $f : \mathbb{R} \to \mathbb{R}$ is not continuous at a point $x \in \mathbb{R}$.
 - (c) Using the (ϵ, δ) -definition, show for any pair of functions $f, g : \mathbb{R} \to \mathbb{R}$: If f is continuous at x and g is continuous at f(x), then $g \circ f$ is also continuous at x.
- 4. (i) Let $g: [0, \sqrt{2\pi}] \to \mathbb{R}, g(x) = \sin(x^2)$. Calculate explicitly $g^{-1}([0, 1])$. (ii) Let $f: [1, \infty) \to \mathbb{R}$ be defined as

$$f(x) = \frac{3x+1}{x(2+\cos(x))}.$$

Find $\inf_{x \in [1,\infty)} f(x)$.

r I	Ē	ag	jē	'n	ū	m	be	ər	-	-	-	-	-	-	-	•
I.						3	8	0	f	4						
i						Ŭ		•	•	1						
L	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-

Exam code	ר ו
MATH1051-WE01	1
1	i
L	

- 5. (a) State the Completeness Axiom of the real numbers.
 - (b) Let (x_n) be a bounded, monotone increasing sequence of real numbers. Using the Completeness Axiom of the real numbers, show that (x_n) is convergent. *Hint:* Show first that the set $\{x_n \mid n \in \mathbb{N}\}$ has a supremum and then show that (x_n) must converge to this supremum.
 - (c) Use (b) to show that the sequence (a_n) , defined by

$$a_1 = 0, \quad a_{n+1} = a_n + \frac{\sin^2(n)}{2^n} \text{ for all } n \in \mathbb{N},$$

is convergent. *Hint:* Use the geometric series and its limit

$$\sum_{n=0}^{\infty} c^n = \frac{1}{1-c}$$

for |c| < 1.

6. Determine whether or not the following series converge:

(a)
$$\sum_{n=1}^{\infty} \left(\frac{n-1}{n^5+2}\right)^{1/3},$$

(b)
$$\sum_{n=2}^{\infty} \left(n\sqrt{\log n}\right)^{-1}.$$

- 7. (i) Discuss the convergence of the series $\sum_{n=1}^{\infty} [\pi n \cos(\pi n)]^{-1}$.
 - (ii) Compute the radius of convergence of the power series $\sum_{n=1}^{\infty} a_n z^n$, where $a_n = (4n)! (4n)^{-2n} / (n!)^2$.
- 8. (a) Determine whether or not the following integral converges:

$$\int_0^1 \sqrt{\frac{x^2+1}{x}} \, dx.$$

(b) Let $f(x) = x^p / \sqrt{x^5 + 1}$ for x > 0. Determine all the values of the real constant p for which the integral $\int_1^\infty f(x) dx$ converges.

- 9. (a) Let (x_n) be a real sequence. Prove that if the series $\sum_{n=1}^{\infty} |x_n|$ converges, then $\sum_{n=1}^{\infty} x_n$ converges as well.
 - (b) Define a sequence of functions (f_n) on the interval [0, 1] by

$$f_n(x) = x^{2n} / (1 + x^{2n}).$$

Find the pointwise limit f(x) as $n \to \infty$, and determine whether or not this limit is uniform.

- 10. (a) Let (f_n) be a sequence of continuous real-valued functions on the interval [0, 1], such that $f_n \to f$ as $n \to \infty$, uniformly on [0, 1]. Prove that $\int_0^1 f_n(x) dx \to \int_0^1 f(x) dx$ as $n \to \infty$.
 - (b) Determine whether the series

$$\sum_{n=1}^{\infty} n^{-1} x^n (1-x)$$

is uniformly convergent on the interval [0, 1]. (Hint: first compute the maximum of the function $f_n(x) = x^n(1-x)$ on [0, 1].)