

EXAMINATION PAPER

Examination Session: May

2017

Year:

Exam Code:

MATH1561-WE01

Title:

Single Mathematics A

Time Allowed:	3 hours			
Additional Material provided:	None			
Materials Permitted:	None			
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.		
Visiting Students may use dictionaries: No				

Instructions to Candidates:	Credit will be given for your answers to each question. All questions carry the same marks.			

Revision:

- 1. (i) Differentiate $x^{x \sin(x)}$ with respect to x.
 - (ii) Compute the following two limits:

$$\lim_{x \to 1} \frac{\sin(\pi x)}{1 - x^2}, \qquad \qquad \lim_{x \to \infty} 2^{-x} \cos(x^2) \; .$$

Clearly state which theorem you have used, if any.

(iii) State the definition of the derivative of a function f(x) as a limit. By working out this limit find the derivative of

$$f(x) = \frac{x+2}{x-1} \; .$$

Note: do not use L'Hôpital's rule here!

2. (i) Compute the following definite integral:

$$\int_0^{\pi/6} \sin(2x) \cos(x) dx \; .$$

(ii) Compute the following indefinite integral:

$$\int \ln(x)^2 dx$$

(iii) Compute the following indefinite integral:

$$\int \frac{7x+9}{(x+2)^2(x^2+2x+5)} dx \, .$$

(iv) Show that, for z = x + iy,

$$|\cos(z)|^2 = a\cos(2x) + b\cosh(2y)$$

where a and b are numbers which you should determine.

3. (i) Find the modulus and argument of

$$\exp\left(\frac{4+3i}{1-i}\right) \ .$$

- (ii) State de Moivre's theorem.
- (iii) Express $\sin(3\theta)$ as a polynomial in $\sin(\theta)$.
- (iv) Find all solutions z to the equation

$$z^4 + 2z^2 + 2 = 0 \; .$$

Give all your answers in polar form.

(v) Find all solutions z to the equation

$$\cos(z^4) = 1 \; .$$

Hint: write $\exp(iz^4) = w$ and solve for w first.

- 4. (i) (a) Explain the difference between absolute convergence and conditional convergence.
 - (b) State the ratio test and quotient tests and state a simple test for determining convergence of an alternating series.
 - (c) Explain whether the following series is conditionally convergent, absolutely convergent, or divergent, carefully justifying your answer:

$$\sum_{n=1}^{\infty} \left(\frac{-(n+2)}{3n-2} \right)^n$$

- (ii) Find the interval of convergence for the power series $\sum_{k=2}^{\infty} (k+1)(-2x)^k$.
- 5. (a) Write down expressions for the formal Taylor series of a function f(x) about x = a.
 - (b) Write down the corresponding Taylor polynomials of degree N and the corresponding Lagrange form of the remainder.
 - (c) Find the Taylor polynomial of degree 2 about x = 1 of the function

$$f(x) = x^{-2/3}$$

(d) Write down the Lagrange form of the remainder of this Taylor polynomial evaluated at x and give an upper bound on the absolute value of this remainder when x = 11/10 (write your answer as a fraction).

6. (i) Let
$$A = \begin{pmatrix} 2 & -3 \\ 2 & 5 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 3 & -5 \\ -3 & 1 & -2 \end{pmatrix}$.

Evaluate the following expressions or give reasons why they are undefined.

$$4B$$
, $A+B$, AB , BA .

(ii) Determine the condition on a, b, c for which the following system of equations

is consistent, and find the general solution when this condition is satisfied.

(iii) Find the determinant of the following matrix.

$$\begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 5 & 2 & 1 \\ 2 & 1 & -3 & 0 \\ 0 & 1 & -3 & 0 \end{pmatrix}$$

7. (i) (a) Find the eigenvalues and corresponding eigenvectors of the matrix

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$

- (b) Hence find A^{10} . [Write the resulting matrix with integers or reduced fractions as entries, using that $3^{10} = 59,049$.]
- (ii) Define a group and show that the set of special orthogonal $n \times n$ matrices A form a group under matrix multiplication. [A special orthogonal matrix is one which satisfies $AA^T = I_n$ and det A = 1 where I_n is the $n \times n$ identity matrix.]