

EXAMINATION PAPER

Examination Session: May Year: 2017

Exam Code:

MATH2031-WE01

Title:

Analysis in Many Variables II

Time Allowed:	3 hours	
Additional Material provided:	None	
Materials Permitted:	None	
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.
Visiting Students may use diction	onaries: No	

Revision:

SECTION A

- 1. (a) Compute the gradient, ∇f , of $f(x, y, z) = x^3 + xy + z^4$. In which direction is this function decreasing the fastest at the point (1, 1, 1), and what is the equation for the tangent plane to the surface f(x, y, z) = 3 at this point?
 - (b) Let F(t) be the value of f(x, y, z) restricted to the curve x = t, $y = t^2$, z = 1/t. Use the chain rule to calculate $\frac{dF}{dt}$.
- 2. (i) (a) Sketch the three-dimensional vector field $\mathbf{A}(x, y, z) = x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3$ in the z = 0 plane.
 - (b) Compute the curl of **A** and comment on its value in relation to your sketch.
 - (ii) Using index notation, calculate the curl of $\mathbf{v} = (\mathbf{a} \cdot \mathbf{x})\mathbf{x}$, where \mathbf{a} is a constant.
- 3. (a) Give the definition of the limit of a function:

$$\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = l$$

where \mathbf{x} and \mathbf{a} are n dimensional vectors.

- (b) Define what is meant by $f(\mathbf{x})$ being continuous at \mathbf{a} .
- (c) For the function

$$f(\mathbf{x}) = \frac{-2xy}{x^2 + y^2}$$

test whether $\lim_{\mathbf{x}\to\mathbf{0}} f(\mathbf{x})$ exists.

4. A solid cylinder C of radius 1 and height 1 is defined by

$$C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, \ 0 \le z \le 1\}.$$

Show that the paraboloid $P = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 + y^2\}$ cuts C into two pieces of equal volume.

5. (a) Use Green's theorem in the plane to show that

$$\oint_C \left((x+y) \, dy + (x-y) \, dx \right) = K A \,,$$

where C is a curve in the x, y plane, A is the area enclosed by C, and K is a constant which you should determine.

- (b) Use the divergence theorem to show that $\int_S \mathbf{x} \cdot d\mathbf{A} = L V$, where the surface S encloses a volume V in \mathbb{R}^3 , and L is a constant which you should determine.
- 6. Find the coefficients a, b, c and d in the following generalised function identities:

(a)
$$x\delta(x-2) = a\,\delta(x-2)$$

- (b) $x\delta'(x-2) = b\,\delta(x-2) + c\,\delta'(x-2),$
- (c) $x\delta(x^3 2x^2 + x 2) = d\delta(x 2).$

SECTION B

- 7. (a) Suppose the level curve defined by f(x, y) = c can be written as the function y = g(x), where f(x, y) is differentiable. Derive an expression for dg/dx in terms of the partial derivatives of f(x, y).
 - (b) State the implicit function theorem as applied to the function f(x, y) from question 7.(a).
 - (c) Consider the function

$$f(x,y) = (3x+y)e^{3xy}.$$

Determine whether or not the curve f(x, y) = c can be written in the form y = g(x), and if not, state clearly the points (x_0, y_0) and corresponding values of c where problems occur.

- (d) Using f(x, y) as given in question 7.(c), determine whether or not the curve f(x, y) = c can be written in the form x = h(y), and if not, state clearly the points (x_0, y_0) where problems occur.
- (e) Using f(x, y) as given in question 7.(c), are there any points where the curve f(x, y) = c can neither be written as y = g(x) nor as x = h(y)?
- 8. (a) Given a scalar function f defined on \mathbb{R}^n , explain what is meant by a critical point of f.
 - (b) Now suppose f(x, y) is a scalar function on \mathbb{R}^2 . State sufficient conditions for a critical point of f to be either (i) a local maximum, (ii) a local minimum, or (iii) a saddle point of f, in terms of the 2×2 Hessian matrix with components $H_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$:

$$H = \left(\begin{array}{cc} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{array}\right).$$

(c) Find and classify all critical points of the scalar function

$$f(x,y) = x^4 + 4xy + y^4.$$

(d) Using f(x, y) as given in question 8.(c), use the method of Lagrange multipliers to find the critical points of f(x, y) subject to the constraint g(x, y) = 0 where g(x, y) = x + y. Comment on your results as they relate to question 8.(c).

- 9. (a) State Stokes' theorem and use it to show that if $\nabla \times \mathbf{v} = 0$ in a simply connected region D of \mathbb{R}^3 and C is a closed curve in D, then $\oint_C \mathbf{v} \cdot d\mathbf{x} = 0$.
 - (b) Show further that if C_1 and C_2 are two curves in the region D with the same starting and ending points, then $\int_{C_1} \mathbf{v} \cdot d\mathbf{x} = \int_{C_2} \mathbf{v} \cdot d\mathbf{x}$.
 - (c) Now consider the vector field **V** defined for $x^2 + y^2 \neq 0$ by

$$\mathbf{V}(x,y,z) = \left(\frac{-y}{x^2 + y^2} \,,\, \frac{x}{x^2 + y^2} \,,\, z\right).$$

Compute $\nabla \times \mathbf{V}$ at all points where it is defined, and evaluate the line integrals $\int_{C_1} \mathbf{V} \cdot d\mathbf{x}$ and $\int_{C_2} \mathbf{V} \cdot d\mathbf{x}$ where C_1 is the semi-circle $\mathbf{x}(t) = (2\cos(t), 2\sin(t), 0), 0 \le t \le \pi$, and C_2 is the semi-circle $\mathbf{x}(t) = (2\cos(t), -2\sin(t), 0), 0 \le t \le \pi$. Explain why your answer does not contradict the result from part (b).

- (d) Now let **V** be as in part (c), C_3 be the semi-ellipse $\mathbf{x}(t) = (2\cos(t), \sin(t), 0)$, $0 \le t \le \pi$, and C_4 be the semi-ellipse $\mathbf{x}(t) = (2\cos(t), -\sin(t), 0)$, $0 \le t \le \pi$. Using parts (b) and (c), find the values of $\int_{C_3} \mathbf{V} \cdot d\mathbf{x}$ and $\int_{C_4} \mathbf{V} \cdot d\mathbf{x}$.
- 10. (a) Show that the series

$$\varphi(x,y) = \sum_{n=1}^{\infty} A_n \sin(n\pi x) \sinh(n\pi y)$$

satisfies Laplace's equation $\nabla^2 \varphi = 0$ inside the unit square 0 < x < 1, 0 < y < 1 (you can assume that you can interchange the orders of integration and differentiation). Show also that $\varphi(0, y) = \varphi(1, y) = 0$ for $0 \le y \le 1$, and that $\varphi(x, 0) = 0$ for $0 \le x \le 1$.

- (b) In addition to the boundary conditions imposed in part (a), it is now imposed that $\varphi(x,1) = f(x)$ for $0 \le x \le 1$, for some given function f(x). Obtain a formula for the coefficients A_n in the expansion of $\varphi(x,y)$. The formula $\sin(A)\sin(B) = \frac{1}{2}(\cos(A-B) \cos(A+B))$ can be used without proof.
- (c) Using your result from part (b), find the series solution to Laplace's equation on the unit square with boundary conditions

$$\varphi(0,y) = \varphi(1,y) = 0, \quad 0 \le y \le 1; \quad \varphi(x,0) = 0, \ \varphi(x,1) = x, \quad 0 \le x \le 1.$$

(d) Find an expression for the solution $\psi(x, y)$ to Laplace's equation on the unit square with boundary conditions

$$\psi(0,y) = 0, \ \psi(1,y) = y, \ 0 \le y \le 1; \ \psi(x,0) = 0, \ \psi(x,1) = x, \ 0 \le x \le 1.$$

(Hint: use your result from part (c), and the principle of superposition.)