

EXAMINATION PAPER

Examination Session: May

2017

Year:

Exam Code:

MATH2581-WE01

Title:

Algebra II

Time Allowed:	3 hours			
Additional Material provided:	None			
Materials Permitted:	None			
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.		
Visiting Students may use dictionaries: No				

Instructions to Candidates:	Credit will be given for: the best FOUR answers from Section and the best THREE answers from S Questions in Section B carry TWICE in Section A.	n A ection B. as many ma	arks as those
		Daviaian	

Revision:

SECTION A

- 1. (i) Find an element in $\mathbb{Z}[\sqrt{-2}]$ which is neither a unit nor a zero-divisor. (You must prove that the element you give has these properties.)
 - (ii) Prove that an element in a commutative ring R cannot be both a unit and a zero-divisor.
- 2. Let R be the ring $\mathbb{Z}/2 \times \mathbb{Z}/4$.
 - (a) Find all the ideals of R. (You may use without proof that any ideal of R is of the form $I \times J$, where I is an ideal of $\mathbb{Z}/2$ and J is an ideal of $\mathbb{Z}/4$.)
 - (b) Find all prime ideals of R. (You must prove that your ideals are prime and that the others are not.)
- 3. Let R be the ring $(\mathbb{Z}/2)[x]/(x^2 + \overline{1})$.
 - (a) List the elements of R (no proof required).
 - (b) Give the multiplication table for the ring R.
- 4. (i) Determine the order of the element $(\bar{1}, \bar{2})$ in the group $\mathbb{Z}/2 \times \mathbb{Z}/3$.
 - (ii) Write down two *distinct* group isomorphisms from $\mathbb{Z}/3$ to itself. (You must show that the maps you write down are isomorphisms.)
- 5. (i) Show that a group G is abelian if and only if the map $f: G \to G$ defined by $f(g) = g^2$ is a homomorphism.
 - (ii) Suppose that G is a finite group and $\varphi : G \to A_5$ is a surjective homomorphism such that Ker φ has order 3. Determine the order of G.
- 6. Let $S = \{z \in \mathbb{C} \mid |z| = 1\}$, that is, the set of complex numbers with modulus 1.
 - (a) Show that S is a subgroup of \mathbb{C}^{\times} .
 - (b) Show that the quotient group \mathbb{C}^{\times}/S is not finite.

SECTION B

7. Let $f(x) = x^5 + x^4 - x^3 + x^2 + x$ and $g(x) = x^5 - x^4 - x + \overline{1}$, and let

$$R = (\mathbb{Z}/3)[x]/(f(x), g(x)).$$

- (a) Find a monic polynomial $h(x) \in (\mathbb{Z}/3)[x]$ such that (h(x)) = (f(x), g(x)) and factorise h(x) into irreducibles.
- (b) Show that R is isomorphic to the product of two non-zero rings (mention the results from the lectures that you use and why they apply to the case at hand).
- (c) Find the number of elements of R.
- 8. For $\bar{a} \in \mathbb{Z}/5$, let I be the ideal of the ring $(\mathbb{Z}/5)[x]$ such that $I = (x^2 + \bar{a}x + \bar{1})$.
 - (a) Find all $\bar{a} \in \mathbb{Z}/5$ such that $(\mathbb{Z}/5)[x]/I$ is a field.
 - (b) Find all $\bar{a} \in \mathbb{Z}/5$ such that $x^2 + \bar{a}x + \bar{1}$ has a double root, that is, $x^2 + \bar{a}x + \bar{1} = (x \bar{\alpha})^2$, for some $\bar{\alpha} \in \mathbb{Z}/5$.
 - (c) Prove that if $x^2 + \bar{a}x + \bar{1}$ has a double root, then

$$(\mathbb{Z}/5)[x]/I \cong (\mathbb{Z}/5)[x]/(x^2).$$

- 9. Let $D_n = \langle r, s \rangle$ for $n \geq 3$, and let $N = \langle r^2 \rangle$ be the subgroup generated by r^2 .
 - (a) Show that N is normal in D_n .
 - (b) For each element $r^{2i} \in N$, find the conjugacy class of r^{2i} .
 - (c) Determine the cosets of N in D_n when n is even. (You must prove that you have all the cosets and that your cosets are distinct.)
 - (d) Assume that n is even. What is the well known group that D_n/N is isomorphic to? (Justify your answer.)
- 10. (i) Let σ and τ be the following permutations in S_5 :

$$\sigma = (34)(215), \qquad \tau = (12345).$$

- (a) Determine σ^3 and $\tau^{-1}\sigma$, writing your answers as products of disjoint cycles.
- (b) Write σ and τ as products of transpositions. Which of them (if any) belongs to A_5 ?
- (ii) Let G be a finite group acting on a finite set X. Let s be the number of orbits in X of size 1, that is, $s = |\{x \in X \mid gx = x, \text{ for all } g \in G\}|$. Let X_1, \ldots, X_r be the orbits in X of size at least 2.
 - (a) Show that

$$|X| = s + \sum_{i=1}^{r} |X_i|.$$

(b) Suppose that G is a group of order p^n for some prime number p and integer $n \ge 1$. Show that

$$|X| \equiv s \pmod{p}.$$