

EXAMINATION PAPER

Examination Session: May

2017

Year:

Exam Code:

MATH2617-WE01

Title:

Elementary Number Theory II

Time Allowed:	2 hours			
Additional Material provided:	None			
Materials Permitted:	None			
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.		
Visiting Students may use dictionaries: No				

Instructions to Candidates:	Credit will be given for the best TWO and the best TWO answers from Sec Questions in Section B carry ONE an marks as those in Section A.	answers fro etion B. d a HALF tir	m Section A nes as many

Revision:

SECTION A

- 1. (i) Give the definition of a multiplicative function $f : \mathbb{N} \to \mathbb{N}$.
 - (ii) Let $\phi(n)$ be the Euler totient function. Is the function $f(n) = n \cdot \phi(n)$ multiplicative? Justify your answer.
 - (iii) Is the function g(n) given by the formula

$$g(n) = \begin{cases} -1 & \text{if } n \text{ is prime} \\ 1 & \text{otherwise} \end{cases}$$

multiplicative?

- (iv) Compute $\phi(2775)$.
- 2. (i) Let m_1 and m_2 be two positive integers which can be written as a sum of two squares. Prove that their product m_1m_2 is also a sum of two squares. (You are not allowed just to quote the corresponding lemma from the lectures. You need to prove it.)
 - (ii) You are given that 2017 is a prime number. How many different representations as a sum of two squares does 2017 have? (Two representations $2017 = x^2 + y^2$ and $2017 = y^2 + x^2$ are considered to be the same).
 - (iii) Find two different representations of $2329 = 137 \cdot 17$ as a sum of two squares.
- 3. (i) State Fermat's Little Theorem.
 - (ii) You are given that $2^{1333337} \equiv 7332991 \pmod{13333337}$. Can you conclude that 133333337 is prime? That 133333337 is composite? Justify your answer.
 - (iii) You are given that 1997 is prime. Compute an integer n such that $0 \le n < 1997$ and $2^{4000} \equiv n \pmod{1997}$.
 - (iv) You are given that $11^{1728} \equiv 1 \pmod{1729}$. Is 1729 a prime number? If yes, justify your answer. If no, provide a prime factorisation of 1729.

SECTION B

4. (a) Let p > 3 be a prime number. Show that the quadratic congruence

$$x^2 + x + 1 \equiv 0 \pmod{p}$$

has an integer solution if and only if -3 is a quadratic residue modulo p.

- (b) Show that for any $n \in \mathbb{N}$ all prime divisors of a number $n^2 + n + 1$ are either equal to 3 or of the form 3k + 1 with positive integer k.
- (c) Show that there are infinitely many prime numbers of the form 3k + 1 with positive integer k.
- (d) Prove the following statement: if $2^{3n} 1$ is divisible by 131 then $2^n 1$ is divisible by 131.
- 5. (a) Give the definition and the general formula of a primitive Pythagorean triple.
 - (b) Prove that for any primitive Pythagorean triple (x, y, z) the product xyz is always divisible by 60. [Hint: you can independently check that it is divisible by 3, 4 and 5.]
 - (c) Find all primitive Pythagorean triples (x, y, z) such that y = 2x + 1 and y < 1000.
- 6. (a) Find the continued fraction of $\sqrt{34}$.
 - (b) Find a rational number p/q such that $p, q \in \mathbb{N}, q < 100$ and

$$\left|\sqrt{34} - \frac{p}{q}\right| < \frac{1}{2 \cdot 10^4}.$$

(c) Find two different solutions of the equation

$$x^2 - 34y^2 = 1. \tag{(*)}$$

(d) Let $(x_0, y_0) \in \mathbb{N}^2$ be a solution of the equation (*). Show that an infinite series (x_n, y_n) of solutions of (*) can be achieved by the following recurrent formula:

$$x_{n+1} = 35x_n + 204y_n, \quad y_{n+1} = 6x_n + 35y_n.$$

[Hint: using quadratic field extensions may help here.]