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SECTION A

1. (i) What does it mean to say that a knot is achiral? What does it mean to say
that a knot is invertible?

(ii) Using only Reidemeister moves, show that the trefoil knot is invertible. Indi-
cate clearly on your diagrams where the moves are being applied and only do
one move per diagram. (Hint: It may help for you to break the process into
stages, noting that the following two diagrams

K K

are always equivalent.)

(iii) Explain how one may prove that the trefoil knot is not achiral. You may
refer to any of the techniques seen in the course but need not provide the full
accompanying calculations.

2. (a) Given a link diagram D, a crossing change is an alteration of D which switches
the roles of the overpass and the underpass at a single crossing. Prove that for
every link diagram D of n components there is a sequence of crossing changes
which may be applied to D resulting in a diagram of the n-component unlink.

(b) State the defining relations of the absolute polynomial.

(c) Compute the absolute polynomial of the n-component unlink.

(d) Calculate the absolute polynomial of the following link:

3. (a) For a map γ : S1 → S1, define the winding number ω(γ) of γ.

(b) For two maps γ1, γ2 : S1 → S1, prove that ω(γ1 · γ2) = ω(γ1) + ω(γ2). The
product function γ1 ·γ2 is defined by considering S1 as a subset of C and setting
(γ1 · γ2)(z) := γ1(z) · γ2(z).

(c) Given fi : C→ C, define γi : S
1 → S1 by

γi(z) :=
fi(z)

|fi(z)|
.

Determine ω(γi) for:

(i) f1(z) = z4 − z2

4
;

(ii) f2(z) = z+4
z− 1

3

;

(iii) f3(z) = z̄2+2z̄
z2+3z− i

2
z− 3i

2

.
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SECTION B

4. (i) (a) Apply Seifert’s algorithm to the oriented knot diagram below and compute
the genus of the resulting surface.

(b) Find an isotopic diagram of the above knot and a corresponding Seifert
surface whose genus realises the genus of the knot. Justify your answer.

(ii) For any given oriented knot diagram D, show that the genus of the Seifert
surface produced from Seifert’s algorithm is unchanged after applying a Rei-
demeister move of type 1 to D. On the other hand, demonstrate through
examples that applying a Reidemeister move of type 2 may or may not change
the genus of the resulting surface.

5. (i) Define the Alexander–Conway polynomial ∇L for an oriented link L. Define
the Jones polynomial VL in terms of the bracket polynomial.

(ii) Given an oriented link L, let L′ be a link of the following form:

L

Find a formula for ∇L′ in terms of ∇L.

(iii) An infinite family of oriented knots and links (Ln)n∈N0 is defined according to
the picture below (which depicts L0, L1, L2 and L3), where the diagram Ln

has n crossings. Compute ∇Ln(1) for each n ∈ N.

6. (i) Define the index of an isolated singularity of a vector field in R2.

(ii) Draw a diagram of the tangent curves to a vector field of the plane which has
an isolated singularity of index -2. Draw another such diagram for a vector
field with an isolated singularity of index 0.

(iii) State the Poincaré–Hopf theorem.
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(iv) The following surface is given a vector field with a single isolated singularity.
The direction of the vector field is illustrated only near to the surface’s four
boundary components. Determine the index of the singularity.
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