

EXAMINATION PAPER

Examination Session: May

2017

Year:

Exam Code:

MATH3041-WE01

Title:

Galois Theory III

Time Allowed:	3 hours			
Additional Material provided:	None			
Materials Permitted:	None			
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.		
Visiting Students may use dictionaries: No				

Instructions to Candidates:	Credit will be given for: the best FOUR answers from Section and the best THREE answers from S Questions in Section B carry TWICE in Section A.	n A ection B. as many ma	arks as those
		Development	

Revision:

SECTION A

- 1. Find the minimal polynomial for $\sqrt[6]{3} + 1$ over:
 - (a) $\mathbb{Q}(\sqrt{3});$
 - (b) $\mathbb{Q}(\sqrt[3]{3}).$
- 2. Find splitting fields and Galois groups of the following polynomials over \mathbb{Q} :
 - (a) $T^4 + 2T^3 + 2T^2$;
 - (b) $T^6 9$.
- 3. Suppose L/K is a finite field extension.
 - (a) Prove that any $\theta \in L$ is a root of some non-zero polynomial from K[X].
 - (b) Prove that the degree of the minimal polynomial of θ divides [L:K].
- 4. Let $K = \mathbb{Q}(\sqrt[5]{2})$.
 - (a) Prove that K is not normal over \mathbb{Q} .
 - (b) Find the minimal field extension L of K such that L is normal over \mathbb{Q} .
- 5. (i) Give the definition of a separable field extension. State carefully the criterion for the field $L = K(\alpha)$, where α is a root of an irreducible polynomial $F(X) \in K[X]$, to be separable over K.
 - (ii) Give an example of an inseparable field extension of degree 3. (Justify your answer.)
- 6. Let $L = \mathbb{Q}(\sqrt[4]{2}, \sqrt[3]{5}).$
 - (a) Find $[L:\mathbb{Q}]$.
 - (b) Prove that $X^4 2$ is the minimal polynomial for $\sqrt[4]{2}$ over $\mathbb{Q}(\sqrt[3]{5})$.

SECTION B

- 7. Let $\Theta = \sqrt{13 5\sqrt{6}}$.
 - (a) Find the minimal field extension L of \mathbb{Q} such that $\Theta \in L$ and L is Galois over \mathbb{Q} ; (Justify your answer.)
 - (b) Find the group $Gal(L/\mathbb{Q})$ and all conjugates for Θ over \mathbb{Q} .
 - (c) Find all subfields K of L such that $[K : \mathbb{Q}] = 2$. (Justify your answer.)
 - (d) Apply Galois theory to prove that $\sqrt{2} \notin L$.
- 8. (i) Find the minimal polynomial for $\alpha = \sqrt[3]{\sqrt{5}-1}$ over \mathbb{Q} .
 - (ii) Let $P(T) = T^3 + 2T + 1 \in \mathbb{Q}[T]$.
 - (a) Find the Galois group of P(T) over \mathbb{Q} .
 - (b) Is there $A \in \mathbb{Q}$ such that $\mathbb{Q}(\sqrt[3]{A}) = \mathbb{Q}(\theta)$, where θ is a root of P(T)? (Justify your answer.)
 - (c) Prove that the splitting field for P(T) over \mathbb{Q} equals $\mathbb{Q}(\theta, \sqrt{-59})$.
- 9. Let ζ be a 17-th primitive root of unity and $L = \mathbb{Q}(\zeta)$. Prove that:
 - (a) there are unique subfields K_1 , K_2 and K_3 in L such that $[L:K_3] = 2$, $[L:K_2] = 4$ and $[L:K_1] = 8$;
 - (b) $L = K_3(\zeta \zeta^{-1});$
 - (c) $K_3 = \mathbb{Q}(\zeta + \zeta^{-1});$
 - (d) $K_2 = \mathbb{Q}(\zeta + \zeta^4 + \zeta^{-1} + \zeta^{-4}).$
- 10. (i) Find all complex roots of the polynomial $T^4 + (9/2)T^2 + 3T + 85/16$.
 - (ii) (a) List all subfields of $\mathbb{F}_{5^{12}}$; (Justify your answer.)
 - (b) Does this field contain a primitive 13-th root of unity?
 - (c) Find an irreducible polynomial $P(X) \in \mathbb{F}_{25}[X]$ such that $\mathbb{F}_{5^{12}} = \mathbb{F}_{25}(\theta)$, where θ is a root of P(X).