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SECTION A

1. (a) Write down the conditions (in terms of the coefficients aij, bj and cj) for a
Runge–Kutta scheme to be of order (at least) 3.

(b) Find all explicit 2-stage Runge–Kutta schemes of order 2.

2. (a) Describe briefly how one obtains the implicit Adams scheme

xn+1 = xn + k
s∑

m=0

Bmf(xn−m+1)

for some constant coefficients Bm.

(b) Verify that the case s = 2 gives the scheme

xn+1 = xn +
k

12
[ 5f(xn+1) + 8f(xn)− f(xn−1)].

3. (a) State what is meant by zero stability for a multistep method.

(b) Prove or give a counterexample: every Runge–Kutta method is zero stable.

(c) Consider the scheme

xn+1 − (1 + γ)xn + γxn−1 =
k

2
[(3− γ)f(xn)− (γ + 1)f(xn−1)].

Work out its order (which may depend on γ ∈ R) and determine what values
of γ are suitable for use.

4. Let u = u(x) solve the following boundary-value problem

u′′(x)− 2u(x) = sin(x)− 1 for x ∈ [0, 1],

u′(0)− u(0) = 0, u(1) = 0.

(a) Assuming that u ∈ C3([0, 1]), write down the Taylor expansion for u(h) centred
at 0 with accuracy O(h3), taking into account that u satisfies the differential
equation.

(b) Based on (a), find a second-order approximation for the boundary condition
u′(0)− u(0) = 0 in terms of u(0) and u(h). Justify your approximation.

5. For the equation ∂tu(x, t) + a∂xu(x, t) = 0 (a is a constant), consider the following
approximation scheme

un+1
m − 1

2
(unm+1 + unm−1)

τ
+ a

unm+1 − unm−1

2h
= 0 with n ∈ Z+, m ∈ Z. (1)

(a) Considering a particular solution unm = λ(φ)neimφ, where φ ∈ [0, 2π], to the
problem (1), find the amplification factor λ(φ).

(b) Now let τ = rh/a for some constant r. Using the spectral stability test,
determine under which conditions on the discretisation parameters τ > 0 and
h > 0 the scheme (1) is stable.
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6. (a) Consider the iteration
xk+1 = Gxk + c

where G is a square matrix, and xj and c are vectors, with x0 given. Assuming
that the equation x = Gx + c has a unique solution, state necessary and
sufficient conditions on G that guarantee convergence of the iteration.

(b) Given a real matrix

A =

 α 0 β
0 α 0
β 0 α

 with α 6= 0,

and some vector b ∈ R3, we seek to solve Ax = b using the Gauss–Seidel
iteration process. Find the transition matrix G corresponding to A.

(c) Find all values of parameters α and β such that the Gauss–Seidel iteration
process converges for arbitrary initial vector x0.

SECTION B

7. (a) For a numerical scheme xn+1 = Φ(xn; k), define what is meant by (i) the local
truncation error, and (ii) the order of the scheme.

(b) For all θ ∈ [0, 1], determine the order of the θ-method,

xn+1 = xn + k[θf(xn) + (1− θ)f(xn+1)]. (2)

(c) One can solve (2) using the fixed-point iterations y0 = xn and

ym+1 = xn + k[θf(xn) + (1− θ)f(ym)].

Stating any necessary assumptions, prove that these iterations converge.

(d) Show that if one terminates the fixed-point iterations at y2, one obtains a
Runge–Kutta scheme; write down its Butcher table.

8. (a) Define the notions of stability region and A-stability for one-step schemes.

(b) Show that the stability region for the implicit Euler scheme xn = xn−1+kf(xn)
is S = {z ∈ C : |z − 1| > 1}.

(c) Let x = (x1, · · · , xN) and consider the system of equations

x′j = −j2xj for j ∈ {1, · · · , N}. (3)

If we are to solve (3) using the implicit Euler scheme, what restrictions (if any)
on the timestep k are necessary? Justify your answer.

(d) Suppose now that we have a fourth-order scheme whose stability region S
satisfies S ∩R = (−1, 0). If this scheme were to be used to solve (3), state any
necessary restrictions on the timestep k. Justify your answer.

(e) Show (“from first principles”) that, when used to integrate (3), any explicit
Runge–Kutta scheme would require a timestep restriction.
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9. Let Ω̄ = [0, 1]× [0, 1] and u = u(x, y) ∈ C1(Ω̄) be such that u|∂Ω = 0; that is

u(0, y) = u(1, y) = 0 for y ∈ [0, 1] and u(x, 0) = u(x, 1) = 0 for x ∈ [0, 1].

(a) Prove that

|u(x, y)| ≤
∫ 1

0

|∂xu(s1, y)| ds1, ∀(x, y) ∈ Ω̄,

|u(x, y)| ≤
∫ 1

0

|∂yu(x, s2)| ds2, ∀(x, y) ∈ Ω̄.

Hint: use Newton’s formula with respect to x for a fixed y and vice versa.

(b) Prove that∫ 1

0

∫ 1

0

|u(x, y)|2 dxdy ≤
∫ 1

0

∫ 1

0

|∂xu(x, y)| dxdy
∫ 1

0

∫ 1

0

|∂yu(x, y)| dxdy.

Hint: estimate |u(x, y)|2, combining inequalities from (a).

Now let um,n, m ∈ 0,M , n ∈ 0, N be a grid function such that

u0,n = uM,n = 0, n ∈ 0, N, um,0 = um,N = 0, m ∈ 0,M.

(c) Prove the discrete analogue of (a), namely

|um,n| ≤
M∑
k=1

|uk,n − uk−1,n|, ∀(m,n), where m ∈ 0,M, n ∈ 0, N ;

|um,n| ≤
N∑
k=1

|um,k − um,k−1|, ∀(m,n), where m ∈ 0,M, n ∈ 0, N.

(d) Prove the discrete analogue of (b), namely

M∑
m=0

N∑
n=0

|um,n|2 ≤

(
N∑
n=0

M∑
k=1

|uk,n − uk−1,n|

)(
M∑
m=0

N∑
k=1

|um,k − um,k−1|

)
.
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10. Consider the eigenvalue problem for the following difference scheme

uk+1 − uk−1

2h
= −λuk for 1 ≤ k ≤ N − 1 with hN = 1, (4)

u0 = 0, uN = 0. (5)

(a) Find the roots µ1 and µ2 of the characteristic polynomial associated to the
difference equation (4). Find the values of µ1 + µ2 and µ1µ2.

(b) Under the assumption µ1 = µ2 := µ, the general solution to the difference
equation (4) takes the form

uk = c1µ
k + c2kµ

k.

Taking into account the boundary conditions (5), find all λ ∈ C such that the
problem (4)–(5) has a nonzero solution.

(c) Under the assumption µ1 6= µ2, the general solution to the difference scheme
takes the form

uk = c1µ
k
1 + c2µ

k
2.

Taking into account the boundary conditions (5), find all λ ∈ C such that
problem (4)–(5) has a nonzero solution.

ED01/2017
University of Durham Copyright

END


