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SECTION A

1. Consider a two dimensional Hilbert space spanned by the orthonormal basis
S = {|1〉, |2〉}. The action of the physical observable Ω̂ on S is given by

Ω̂ |1〉 =|1〉+
√

3 |2〉
Ω̂ |2〉 = b |1〉− |2〉 ,

with b a complex constant.

(a) Find the matrix form of Ω̂ in the basis S and fix the constant b.

(b) What are the possible outcomes in a measurement of Ω̂ ?

(c) A measurement of Ω̂ yields the maximum possible outcome. Write the state
right after the measurement as a linear combination of the basis vectors S.

2. Consider a quantum mechanical particle of mass m in two dimensions subject to a
potential V which classically takes the form

V (x, y) = c2x x
2 + c2y y

2

for some real constants cx and cy.

(a) Write down the quantum mechanical Hamiltonian Ĥ of the system.

(b) Compute the commutator of Ĥ with the angular momentum operator L̂.
Hint: You can use L̂ = x̂ p̂y − ŷ p̂x.

(c) Find the condition that cx and cy have to satisfy for the expectation value of L̂
to be conserved in time.

3. The Fermionic simple harmonic oscillator is based on the operator b̂ which satisfies

b̂2 = 0, {b̂†, b̂} ≡ b̂† b̂+ b̂ b̂† = 1

(a) What is the operator (b̂†)2 equal to?

(b) Consider the operator N̂ = b̂† b̂. Compute N̂2 and find the constant a which
satisfies N̂2 = a N̂ .

(c) Find all the eigenvalues of the operator N̂ . Justify your answer.
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4. The potentials for two different one-dimensional quantum systems are shown in the
figure below.

A quantum particle is propagating in one dimension under the influence of these
potentials. Answer the following questions:

(a) Is the energy eigenspectrum of the particle in the potential A) discrete or not?
If only part of the spectrum is discrete, explain for which values of the energies
this happens.

(b) Is the energy eigenspectrum of the particle in the potential B) discrete or not?
If only part of the spectrum is discrete, explain for which values of energies
this happens.

(c) For the potential B) state for which values of the variable x the wave functions
are oscillatory and for which values of x they are not. If the range in which this
happens depends on the energy E of the particle, please clearly say at which
values of x the wave function changes.

(d) For the potential B), in the region where the wave function is not oscillatory,
sketch how the probability density behaves as a function of x. Where the wave
function is oscillatory, indicate in which direction the amplitude of oscillations
increases for highly excited (semi-classical) energy eigenstates. Around which
point is the probability to find the semiclassical particle the largest?
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5. A quantum particle of energy E � V0 and mass m is placed inside a potential well
with a sloped bottom and infinitely high walls; the potential V (x) is given by

V (x) =

∞ x ≤ 0 and x ≥ L ,

V0
L
x 0 < x < L ,

where L, V0 > 0.

(a) Apply the WKB approximation to this system and derive the form of the wave
function. Explain why it is justified to use the WKB approximation for this
system.

(b) Using the wave function derived above, derive the equation for the energies
that this particle can have. You do not need to solve this equation explicitly.

6. A particle is propagating in a potential given by

V (r, θ, ϕ) = αr2 ,

where α > 0 and r, θ, ϕ are spherical coordinates. The Laplacian in spherical coor-
dinates is given by

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
− 1

r2
L̂2 ,

where L̂2 is the square of the angular momentum operator in the coordinate repre-
sentation.

(a) By separation of variables in spherical coordinates, write down the angular
equation for this system. Without explicitly solving this equation, state which
quantum numbers characterise the solutions of this equation.

(b) By separation of variables in spherical coordinates, write down the radial equa-
tion for this system.

(c) Evaluate the energy of the ground state, if its wave function is given by

R(r) = Be−
1
2~
√
2mαr2

Here B is a normalisation constant which is irrelevant.

(d) Is there an alternative way of determining the ground state energy of this
system, without knowing the wave function given in the previous part?
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SECTION B

7. The quantum mechanical Hamiltonian describing a particle with spin 1/2 in a mag-
netic field along the z direction of amplitude B is given by

Ĥ =
µB

2
σ̂z .

We will be ignoring the particle’s orbital motion and the vector space of states will
be two dimensional. The given constant µ is the particle’s magnetic moment and
the Pauli matrices are given by

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
.

(a) Find the energy eigenstates and energy eigenvalues.

(b) At t = 0, we perform a measurement of σ̂x which yields the maximum value
possible. Find the state right after the measurement.

(c) Write the particle’s state after a time interval t > 0.

(d) Compute the expectation values 〈 σ̂x 〉, 〈 σ̂y 〉 and 〈 σ̂z 〉 at a later time t > 0.
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8. Consider the isotropic two dimensional simple harmonic oscillator of frequency ω
and mass m. The quantum mechanical Hamiltonian Ĥ and angular momentum L̂
operators can be expressed as

Ĥ = ~ω
(
â† â+ b̂† b̂+ 1

)
L̂ = ~

(
â† â− b̂† b̂

)
with the only non-trivial commutators among the operators â†, â, b̂† and b̂ being

[â, â†] = 1, [b̂, b̂†] = 1 .

We define the unit norm states

|m,n〉 =
1√
m!

1√
n!

(â†)m (b̂†)n |0, 0〉

for m and n non-negative integers and with | 0, 0〉 being the correctly normalised
ground state satisfying â |0, 0〉 = b̂ |0, 0〉 = 0.

(a) Use induction to show that [â, (â†)m] = m (â†)m−1 and [b̂, (b̂†)n] = n (b̂†)n−1 with
m and n being positive integers.

(b) Compute the commutator between Ĥ and L̂. Is angular momentum conserved?
Is the Hamiltonian invariant under small rotations? Justify your answers.

(c) Show that the states |m,n〉 are simultaneous eigenstates of Ĥ and L̂. Give the
expressions for the corresponding eigenvalues in terms of m and n.

(d) Use the results of the previous parts of this question to deduce the inner product
〈m1, n1 |m2, n2 〉 without any computation.

(e) At t = 0 the system is in the state |ψ(t = 0)〉 = 1√
2

(|1, 0〉+ |0, 0〉). What is the

expectation value of 〈 L̂ 〉 at a later time t > 0 ?
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9. The simple harmonic oscillator (SHO) in one dimension has the Hamiltonian

Ĥ0 =
1

2
κ2x2

and is perturbed by the Hamiltonian

Ĥ ′ = αx3 + βx4 ,

where α, β > 0 are two small constant parameters, which are of the same order.

(a) If you would want to solve this system in perturbation theory, would you
need to use non-degenerate or degenerate perturbation theory? Motivate your
answer.

(b) Derive the general expression for the first order correction to the energy in
perturbation theory applicable to this system.

(c) Evaluate the expression for the energy correction which you have obtained
above explicitly for the n-th energy eigenstate of the SHO with perturbation Ĥ ′

given above.

(d) Derive the general expressions for the first order correction to the wave function
in perturbation theory applicable to this system.

Hint: When doing this problem you may need the following relations between the
x̂, p̂ and creation/annihilation operators â†, â of the SHO,

â =
√
m/2~ω(ωx̂+ imp̂) ,

â† =
√
m/2~ω(ωx̂− imp̂) ,

so that [â, â†] = 1.

10. A quantum particle of mass m has a Hamiltonian given by

Ĥ = Ĥ0 + αr̂4 with Ĥ0 =
1

2
m (p̂2x + p̂2y + p̂2z) ,

where r̂2 = x̂2+ ŷ2+ ẑ2 . You may assume without proof that [L̂2, Ĥ0] = [L̂z, Ĥ0] = 0
where L̂2 is the square of the angular momentum operator and L̂i (i = x, y, z) are
its components.

(a) Prove that
[L̂2, r̂4] = 0 and [L̂z, r̂

4] = 0 . (1)

When proving these expressions you are not allowed to go into the coordinate
representation.

(b) What are the implications of (1) on the energy eigenstates of the Hamiltonian
Ĥ? What are the quantum numbers which label the energy eigenstates of the
Hamiltonian Ĥ?

(c) Let |lm〉 be a unit-normalised eigenstate of the operators L̂2 and L̂z. Eval-
uate the following expectation values: 〈L̂2

i 〉 ≡ 〈lm|L̂2
i |lm〉 for i = x, y, z and

〈L̂2〉 ≡ 〈lm|L̂2|lm〉.
(d) Show that 〈L̂2〉 = 〈L̂2

x〉+ 〈L̂2
y〉+ 〈L̂2

z〉 as expected.
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