

EXAMINATION PAPER

Examination Session: May

2017

Year:

Exam Code:

MATH3201-WE01

Title:

Geometry III

Time Allowed:	3 hours			
Additional Material provided:	Formula Sheet			
Materials Permitted:	None			
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.		
Visiting Students may use dictionaries: No				

Instructions to Candidates:	Credit will be given for: the best FOUR answers from Section and the best THREE answers from S Questions in Section B carry TWICE in Section A.	n A ection B. as many ma	arks as those
		Development	

Revision:

SECTION A

- 1. (a) Let R_A and R_B be rotations of the Euclidean plane through $\pi/2$ (in positive direction) around the points $A, B \in \mathbb{E}^2$. Describe the composition $f = R_B \circ R_A$.
 - (b) Given an orientation-preserving isometry $f \in Isom(\mathbb{E}^2)$, is it always possible to write f as a composition of several rotations through right angles? Justify your answer.
 - (c) Let $G \subset Isom(\mathbb{E}^2)$ be the subgroup generated by all rotations through $\pi/2$. Does G act discretely on \mathbb{E}^2 ? Justify your answer.
- 2. (a) Let f be an affine transformation of the plane \mathbb{E}^2 fixing the points O = (0,0)and P = (1,0) and mapping the point (0,1) to (b,1), where $b \in \mathbb{R}$. Show that f preserves areas of triangles with a vertex at O.
 - (b) Let O = (0,0), $A_1 = (2,0)$ and $A_2 = (0,4)$ be points in \mathbb{E}^2 . Let $A_3, \ldots, A_n \in \mathbb{E}^2$ be points such that the line $A_{i-1}A_{i+1}$ is parallel to OA_i , $i = 2, \ldots, n-1$. Is it possible that $A_k = (3,0)$ and $A_{k+1} = (0,3)$ for some k? Justify your answer.
- 3. (a) Let $\Delta \subset \mathbb{E}^2$ be a regular triangle inscribed into a circle \mathcal{C} . Let I be an inversion with respect to \mathcal{C} . Describe the image $I(\Delta)$.
 - (b) Let $A_1A_2A_3A_4$ be a quadrilateral on the Euclidean plane. Let C_i be a circle through the points A_j, A_k, A_l , where $\{i, j, k, l\} = \{1, 2, 3, 4\}$. Show that the angle between C_1 and C_2 is equal to the angle between C_3 and C_4 .
- 4. Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be three pairwise non-collinear vectors in \mathbb{E}^2 such that

$$k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + k_3\mathbf{v}_3 = 0,$$

for $k_1, k_2, k_3 \neq 0$.

- (a) Prove that if these vectors can be affinely transformed into vectors of equal lengths then there exists a triangle with sides $|k_1|, |k_2|, |k_3|$.
- (b) Is the converse statement true, i.e. given that there exists a triangle with sides $|k_1|, |k_2|, |k_3|$, is it always possible to find an affine transformation which maps the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ to three vectors of equal lengths? Justify your answer.

5. (a) Let $a, b, c \in (0, 2\pi)$ be positive numbers such that a < b < c. Let *ABCD* and *KLMN* be quadrilaterals on a unit sphere. Assume that

$$\angle ABC = \angle ACD = \angle KLM = \angle KMN = \pi/2$$

and that

AB = NM = a, BC = ML = b, CD = KL = c.

What is larger, AD or KN? Justify your answer.

- (b) Let ABCE be a spherical quadrilateral with right angles $\angle ABC$ and $\angle BCE$ and with sides AB = a, BC = b, CE = c. Find AE.
- 6. (a) Let $l \subset \mathbb{E}^2$ be a line and let γ be a circle tangent to l. Let $\mathcal{C}_i, i \in \mathbb{Z}$ be circles tangent both to l and γ . Show that there is a circle \mathcal{C}^{\perp} orthogonal to all circles $\mathcal{C}_i, i \in \mathbb{Z}$ simultaneously.
 - (b) In the assumptions of part (a), suppose also that C_i is tangent to C_{i+1} for $i \in \mathbb{Z}$. Fix the line and two circles on the complex plane by

$$l = \{ \text{Im } z = 0 \}, \qquad \gamma = \{ |z - \frac{i}{2}| = \frac{1}{2} \}, \qquad \mathcal{C}_0 = \{ |z - (1 + \frac{i}{2})| = \frac{1}{2} \}$$

and assume that $C_1 \subset \{ \text{ Im } z < \frac{1}{2} \}$. Find a Möbius transformation f such that $f(C_i) = C_{i+1}$ for all $i \in \mathbb{Z}$.

SECTION B

- 7. A polygon P on the hyperbolic plane is called *ideal* if all vertices of P lie on the absolute.
 - (a) Show that for every $\alpha \in (0, \pi)$ there exists an ideal quadrilateral with diagonals intersecting each other at angle α .
 - (b) Show that any two ideal quadrilaterals with diagonals intersecting at the same angle are congruent.
 - (c) Show that in any ideal quadrilateral the two common perpendiculars to its opposite sides are orthogonal to each other.
 - (d) Let P_n be a regular ideal *n*-gon and C_n be the circle inscribed in P_n , i.e. C_n is tangent to all sides of P_n . Denote by S_D the area of a domain D. Show that $\frac{S_{C_n}}{S_{P_n}} \to 0$ as $n \to \infty$.

You may use that $2\sinh^2 \frac{x}{2} = \cosh x - 1$.

8. (a) The points $A_1, B_1, C_1, D_1 \in \mathbb{R}P^2$ are given in homogeneous coordinates by

$$A_1 = (1:2:1), \quad B_1 = (2:1:1), \quad C_1 = (3:3:2), \quad D_1 = (1:-1:0).$$

Is there a projective transformation of $\mathbb{R}P^2$ which maps the points A_1,B_1,C_1,D_1 to

$$A_2 = (0:0:1), \quad B_2 = (1:0:0), \quad C_2 = (1:0:1), \quad D_2 = (1:1:0)$$

respectively? Justify your answer.

(b) Is there a projective transformation of $\mathbb{R}P^2$ which maps the points A_1, B_1, C_1, D_1 defined in part (a) to

$$A_3 = (0:0:1), \quad B_3 = (0:1:1), \quad C_3 = (0:2:1), \quad D_3 = (0:3:1)$$

respectively? Justify your answer.

- (c) Let $A, B, C, D \in \mathbb{R}P^2$ be four non-collinear points such that A, B, C are collinear. Is it true that there exists a projective transformation mapping A, B, C, D to any other given quadruple $A', B', C', D' \in \mathbb{R}P^2$ of non-collinear points such that A', B', C' are collinear? Justify your answer.
- (d) Four planes pass through a common line $l \subset \mathbb{R}^3$. Let m_1 and m_2 be two lines intersecting the four planes at points P_1, Q_1, R_1, S_1 and P_2, Q_2, R_2, S_2 respectively. Prove that the cross-ratio $[P_1, Q_1, R_1, S_1]$ is equal to the cross-ratio $[P_2, Q_2, R_2, S_2]$.

- 9. Let $ABCD \subset \mathbb{E}^2$ be a quadrilateral with AD parallel to BC, |BC| < |AD|. Let $E = AB \cap CD$ and $F = AC \cap BD$. Let $Q = EF \cap AD$.
 - (a) In what proportion does Q divide AD? If in addition |AE| = 2|AB|, in what proportion does F divide EQ? Justify your answer.
 - (b) Let $A_1, \ldots, A_{k+1} \in AE$ be points such that $A_{k+1} := A$ and $|EA_i| = i|EA_1|$ for all $i \in \{1, 2, \ldots, k+1\}$. Similarly, let $D_1, \ldots, D_{k+1} \in DE$ be points such that $D_{k+1} := D$ and $|ED_i| = i|ED_1|$ for all $i \in \{1, 2, \ldots, k+1\}$. Are the lines $A_i D_{i+1}$, for $i = 1, \ldots, k$, parallel to each other? Justify your answer.
 - (c) Let $N = EQ \cap A_k B_{k+1}$. Find the proportion |NQ|/|EQ|.
 - (d) Given the points $X_1, \ldots, X_k \in EA$ and $Y_1, \ldots, Y_k \in ED$, denote

$$Z_i = X_i Y_{i+1} \cap Y_i X_{i+1}, \quad i = 1, \dots, k-1.$$

Denote also by M the midpoint of X_1Y_1 .

Is it true that the segments $X_i Y_i$, i = 1, ..., k, are parallel to each other if and only if the points $E, M, Z_1, ..., Z_k$ are collinear? Justify your answer.

- 10. Given two sets X and Y in the hyperbolic plane, denote by $d(X, Y) = \inf_{x \in X, y \in Y} d(x, y)$ the distance between these sets.
 - (a) Let $l \subset \mathbb{H}^2$ be a line and $A \in \mathbb{H}^2$ be a point such that d(A, l) = q. Let e_l be an equidistant curve to l such that $d(e_l, l) = s$. Find the distance $d(A, e_l)$.
 - (b) Let $l, m \in \mathbb{H}^2$ be two diverging lines, d(l, m) = q. Let e_l and e_m be equidistant curves to the lines l and m respectively, $d(e_l, l) = s$ and $d(e_m, m) = t$. Find the distance $d(e_l, e_m)$ between the equidistant curves e_l and e_m .
 - (c) Let l and m be two diverging lines in the hyperbolic plane. Describe the set of points $\{p \in \mathbb{H}^2 \mid d(p,m) = d(p,l)\}.$
 - (d) Let l_1, l_2, l_3 be three mutually diverging lines in the hyperbolic plane. Suppose that none of the three lines separates the other two. Is it always possible to find a circle tangent to all three lines l_1, l_2, l_3 simultaneously? Justify your answer.