

EXAMINATION PAPER

Examination Session: May

2017

Year:

Exam Code:

MATH3281-WE01

Title:

Topology III

Time Allowed:	3 hours	
Additional Material provided:	None	
Materials Permitted:	None	
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.
Visiting Students may use dictionaries: Yes		

Revision:

Exam code MATH3281-WE01

The following conventions hold in this paper

- $\bullet \ \mathbbmsp{Z}$ denotes the additive group of all integer numbers with the discrete topology.
- $\bullet \ \mathbb{R}$ denotes the space of all real numbers with the Euclidean topology.
- $\bullet \ \mathbb{C}$ denotes the space of all complex numbers with the Euclidean topology.
- \mathbb{R}^n denotes the real *n*-dimensional space with the Euclidean topology.

SECTION A

- 1. (i) State the definition of a topological space.
 - (ii) Let $X = \{a, b, c\}$. List six topologies on X so that no two of them are homeomorphic. You do not need to justify why they are not homeomorphic.
- 2. Let X and Y be topological spaces.
 - (i) State the definition of the product topology on $X \times Y$.
 - (ii) Let Z be a topological space. Show that a function $f: Z \to X \times Y$ is continuous if and only if $p_X \circ f: Z \to X$ and $p_Y \circ f: Z \to Y$ are continuous, where $p_X: X \times Y \to X$ and $p_Y: X \times Y \to Y$ are the projections.
- 3. (a) State the definition of compactness for a topological space.
 - (b) Using this definition, show that \mathbb{R} with the standard topology is not compact.
 - (c) Give a topology on \mathbb{R} which is compact.
- 4. (i) State the classification theorem for closed surfaces without boundary. State the relationship between adding handles and adding cross caps to a surface.
 - (ii) If S is a closed surface and C is a simple closed curve in S, write $\Theta(C)$ for the *thickening* of C in S. In the context of S triangulated by some finite simplicial complex K, and C being a curve contained in the 1-skeleton of K, give a definition of $\Theta(C)$. Explain in general why if S is non-orientable then there must be some C such that $\Theta(C)$ is homeomorphic to a Möbius band.
- 5. (a) In this question, denote by S_r the circle of complex numbers of modulus r > 0, and let $f : \mathbb{C} \to \mathbb{C}$ be a continuous function on the complex plane. Denote by L_r the loop in the complex plane given by the image of $f(S_r)$. If the origin $0 \in \mathbb{C}$ is not in the image of L_r , explain what is meant by $w(L_r, 0)$, the winding number of L_r about 0.
 - (b) Now let f be given by the function $z \mapsto z^2 2z + 1$. Letting r range over all positive real numbers, what are the different values $w(L_r, 0)$ can take (when it is defined)? You may use any facts about winding numbers from lectures provided you state what you are using.

6. Let X be the space defined as a quotient of the square $[0, 1] \times [0, 1]$ by the equivalence relation given by

$$(0,t) \sim (t,1) \sim (1,1-t) \sim (1-t,0)$$

Give a triangulation of X and use it to compute the fundamental group $\pi_1(X)$. You may use any technique from lectures, but you should briefly explain your calculations.

SECTION B

7. Let X be a non-empty topological space. Define a relation \sim on X by $x \sim y$ if there exists a path in X from x to y. For $x \in X$ let

$$P_x = \{ y \in X \mid y \sim x \}.$$

- (a) Show that \sim is an equivalence relation.
- (b) Show that X is path connected if and only if the quotient space X/\sim is a point.
- (c) Show that P_x is connected.
- (d) Assume that X is an open subset of \mathbb{R}^n . Show that P_x is an open subset of X for every $x \in X$.
- (e) Let $X \subset \mathbb{R}^n$ be a connected, open subset. Show that X is path connected.
- 8. For $n \in \mathbb{Z}$, $a \in \mathbb{R}$ and $z \in S^1 = \{w \in \mathbb{C} \mid |w|^2 = 1\}$ define

$$n \bullet z = e^{2\pi i a n} \cdot z$$

where the right side is multiplication of complex numbers.

- (a) Show that $\bullet: \mathbb{Z} \times S^1 \to S^1$ defines an action of \mathbb{Z} on S^1 for every $a \in \mathbb{R}$.
- (b) Determine the values of $a \in \mathbb{R}$ for which this action is the trivial action.
- (c) Show that for rational $a \in \mathbb{Q}$ the quotient space S^1/\mathbb{Z} is homeomorphic to S^1 .
- (d) Show that for irrational $a \in \mathbb{R} \mathbb{Q}$ each orbit $\mathbb{Z}z$ has a limit point in S^1 .
- (e) Show that for irrational $a \in \mathbb{R} \mathbb{Q}$ each orbit $\mathbb{Z}z$ has every point $w \in S^1$ as a limit point.
- 9. (i) Define what it means to say that two maps $f, g: X \to Y$ are *homotopic*, and what it means to say that two spaces A and B are *homotopy equivalent*. Prove that homotopy equivalence of spaces is an equivalence relation on spaces (you may assume that homotopy of maps is an equivalence relation on maps).
 - (ii) Prove that the open 2-disc $E^2 = \{x \in \mathbb{R}^2 \mid ||x|| < 1\}$ is homotopy equivalent to the closed 2-disc $D^2 = \{x \in \mathbb{R}^2 \mid ||x|| \leq 1\}$.
 - (iii) (a) Suppose the finite, path connected simplicial complex X is the union of two subcomplexes A and B, and denote the intersection $A \cap B$ by C. State a relationship between the Euler characteristics of X, A, B and C. State van Kampen's theorem relating the fundamental groups of these spaces, remembering to state any further hypotheses about these spaces you need for the theorem to be true.
 - (b) Suppose further that the subspace C in (a) is homeomorphic to a circle, and bounds discs in each of A and B. What can you now say about $\chi(X)$ and $\pi_1(X)$ in terms of χ and π_1 of the subspaces? If you use van Kampen's theorem, make sure you check any hypotheses needed.

- 10. (i) State and prove Euler's theorem about graphs embedded on a sphere. You may assume any results about the Euler characteristic of a tree from lectures.
 - (ii) Suppose K is a finite simplicial complex which triangulates a closed surface S. What conclusions about the triangulation can you draw from the fact that S is a surface?
 - (iii) The sphere S^2 is triangulated by a simplicial complex with V vertices, E 1simplices and F 2-simplices. The triangulation has the property that at each vertex exactly n edges meet. Use the Euler characteristic of S^2 to obtain a relation between the numbers V and n. Hence prove that only certain values of n are possible; find them all, identifying the simplicial complexes obtained.
 - (iv) Is it possible to have a triangulation of the torus in which at each vertex exactly 5 edges meet?