

EXAMINATION PAPER

Examination Session: May

2017

Year:

Exam Code:

MATH3301-WE01

Title:

Mathematical Finance III

Time Allowed:	3 hours					
Additional Material provided:	None					
Materials Permitted:	None					
Calculators Permitted:	Yes	Models Permitted: Casio fx-83 GTPLUS or Casio fx-85 GTPLUS.				
Visiting Students may use dictionaries: No						

Instructions to Candidates:	Credit will be given for: the best FOUR answers from Section and the best THREE answers from S Questions in Section B carry TWICE in Section A.	n A section B. as many ma	arks as those
		D	1

Revision:

SECTION A

- 1. A butterfly spread is formed from three types of European call option with the same expiry date T, and different strike prices $K_1 < K_2 < K_3$, by buying one call option with strike price K_1 and one call option with strike price K_3 and selling two call options with strike price $K_2 = \frac{1}{2}(K_1 + K_3)$
 - (a) Draw the graph of the payoff at the expiry time of a butterfly spread built from these call options.
 - (b) Suppose that the market prices of European call options with expiry time 6 months are as follows:

Strike price	Current price of option
50	20
60	14
70	12

What is the maximum payoff a butterfly spread created from these options can return?

- (c) Assuming an interest rate of 5% compounded continuously, for what value(s) of the share price in 6 months' time does the butterfly spread in part (b) make a profit?
- 2. Consider a financial market $\mathcal{M} = (B_t, S_t)$ on two assets. Suppose the current share price of the risky asset is $S_0 = 100$ and evolves according to the binomial model with u = 1.2, d = 0.8, $p_u = p_d = 1/2$ and suppose that the current price of the risk-free asset is $B_0 = 1$ and the interest rate is r = 0.1.
 - (a) Calculate the risk-neutral measure for this market.
 - (b) Calculate the no-arbitrage prices at times t = 0, 1, 2 of a lookback put option on this market with payoff $S_{\text{max}} - S_T$ at time T = 3.
- 3. (a) By considering appropriate portfolios prove that the no-arbitrage price P of a European put option with strike price K and expiry date T satisfies the inequalities

$$(K\mathrm{e}^{-rT} - S)^+ \le P \le K\mathrm{e}^{-rT},$$

where S is the current price of the underlying stock and r is the interest rate, compounded continuously.

(b) State and prove the corresponding inequalities for the price C of a European call option with the same strike price and expiry date.

- 4. A stock price follows a geometric Brownian motion with drift $\mu = 0.05$ and volatility $\sigma = 0.3$ and its current price is 95. The risk free interest rate is r = 0.04.
 - (a) Find the no-arbitrage price at time 0 of a European call option on this stock with strike price K = 100 and expiry date T = 0.25.
 - (b) What is the probability that the call option is worth nothing at the expiry date?

[The standard normal cdf is tabulated at the bottom of the page.]

- 5. (i) State the definition of a Brownian motion.
 - (ii) Let $(W_t)_{t\geq 0}$ be a Brownian motion. Find the probability density function of the Itô integral $I = \int_0^{\pi} \cos t \, dW_t$.
 - (iii) Calculate $\mathbb{E}[\int_0^2 W_t^2 \, \mathrm{d}W_t]$ and $\mathbb{V}\mathrm{ar}[\int_0^2 W_t^2 \, \mathrm{d}W_t]$.
- 6. Suppose that X is a Normal random variable with mean μ and variance σ^2 under the probability measure \mathbb{P} , and let \mathbb{Q} be an equivalent measure under which X/σ is a standard Normal random variable.
 - (a) Find an expression for the Radon–Nikodym derivative $\frac{d\mathbb{Q}}{d\mathbb{P}}$ as a function of X.
 - (b) Calculate the expectation of $\frac{d\mathbb{Q}}{d\mathbb{P}}$ under the measure \mathbb{P} .

z	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
N(z)	0.540	0.579	0.618	0.655	0.691	0.726	0.758	0.788	0.816	0.841
z	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
N(z)	0.864	0.885	0.903	0.919	0.933	0.945	0.955	0.964	0.971	0.977
z	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0
N(z)	0.982	0.986	0.989	0.992	0.994	0.995	0.997	0.997	0.998	0.999

Linear interpolation is accurate to 3 decimal places.

r I	Ē	aç	jē	'n	ū	- ml	De	r		-	-	-	-	-	1
1						4	C)f	5						1
I.															1
L	_	_	_	_	_	_				_	_	_	_	_	J

Exam code	
MATH3301-WE01	i
	i
L	

SECTION B

7. Consider a 2-period financial market with possible share prices $S_t, t = 0, 1, 2$, of a risky asset given by the tree:

Suppose the interest rate per time step is r = 0.1.

- (a) Calculate as a function of K the no-arbitrage price at time 0 of a European put option on this asset with strike price K and expiry time T = 2.
- (b) Suppose 75 < K < 200. Calculate as a function of K the no-arbitrage price at time 0 of an American put option on this asset with strike price K and expiry time T = 2.
- (c) Are there values of the strike price K > 0 for which the European and American put options have the same non-zero price?
- 8. (a) State the definitions of an up-and-in call option and an up-and-out call option on an underlying asset with strike price K, barrier L and expiry date T.
 - (b) Suppose the current share price of the asset is $S_0 = 80$ and evolves according to the binomial model with u = 2, d = 1/2, $p_u = p_d = 1/2$ and that the interest rate is r = 1/4. Find the no-arbitrage prices at time 0 of both an up-and-in call option and an up-and-out call option on this asset with the same strike price K = 30, barrier L = 200 and expiry date T = 3.
 - (c) A new "chooser option" is offered on the market based on the above barrier options. The chooser option is sold at time 0 and at time 1 the holder must decide whether the option will be an up-and-in call option, or an up-and-out call option. What is the price at time 0 of this chooser option?
 - (d) Explain why the price in part (c) is at most the price of a standard call option with the same strike price K and expiry date T = 3.

- Exam code MATH3301-WE01
- 9. (a) State Itô's Lemma for a smooth function $f(t, X_t)$ of time t and an Itô process $(X_t)_{t\geq 0}$.
 - (b) Suppose the process $(X_t)_{t\geq 0}$ satisfies a linear stochastic differential equation

$$\mathrm{d}X_t = (a+bX_t)\,\mathrm{d}t + c\,\mathrm{d}W_t, \quad X_0 = 0,$$

where a, b and c are constants and $(W_t)_{t\geq 0}$ is Brownian motion. Use Itô's Lemma to find a non-zero function g(t) for which $d(g(t)X_t)$ does not depend on X_t .

- (c) Calculate $\mathbb{E}X_t$ and $\mathbb{V}arX_t$.
- 10. Consider the continuous-time Black–Scholes model, with price dynamics given by

$$dB_t = rB_t dt,$$

$$dS_t = \mu S_t dt + \sigma S_t dW_t,$$

where r > 0 is the risk-free interest rate, μ and σ are constant parameters and $(W_t)_{t>0}$ is a Brownian motion under the real-world measure \mathbb{P} .

- (a) Suppose $\widetilde{W}_t = W_t + \theta t$ for some constant θ . Show that there exists a measure \mathbb{Q} equivalent to \mathbb{P} under which \widetilde{W}_t is a Brownian motion, and write down the corresponding Radon–Nikodym derivative.
- (b) State the value of θ that defines the risk-neutral measure, and write down the price dynamics of S_t under the risk-neutral measure.
- (c) Using the risk-neutral valuation formula find an expression for the price at time t < T of the contingent claim with payoff $\Phi(S_T) = (S_T)^{\alpha}$, for constant α .
- (d) Using your answer to part (c) or otherwise, solve the partial differential equation

$$\frac{\partial F}{\partial t}(t,x) + x \frac{\partial F}{\partial x}(t,x) + 2x^2 \frac{\partial^2 F}{\partial x^2}(t,x) = F(t,x)$$

with terminal condition $F(1, x) = x^{\alpha}$, for $0 \le t \le 1$ and $x \ge 0$.