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Useful formulae:

• The volume of a ball Bn = {(x1, x2, . . . , xn) | x21 + x22 + · · · + x2n ≤ R2 } and the
surface area of a sphere Sn−1 = {(x1, x2, . . . , xn) | x21 + x22 + · · · + x2n = R2 } of radius R
in n dimensions are:

Vol(Bn) =
πn/2

Γ(n/2 + 1)
Rn , Area(Sn−1) =

2πn/2

Γ(n/2)
Rn−1 .

• The one-dimensional Gaussian integral:∫ ∞
−∞

dx e−ax
2

=

√
π

a
.

• Stirling’s formula:
log n! ≈ n log n− n .

• Gamma function – definition and properties:

Γ(x) =

∫ ∞
0

e−z zx−1 dz Re(x) > 0 ,

Γ(x+ 1) = xΓ(x)

Γ (1/2) =
√
π

Γ(n+ 1) = n! (n ∈ N) .

• Dirac delta function:

δ(x) =

∫ ∞
−∞

dk

2π
ei k x

• Partial sum of a geometric series:

p∑
n=0

xn = 1 + x+ x2 + · · ·+ xp =
1− xp+1

1− x
.
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SECTION A

1. Consider a system whose entropy fundamental relation is

S(E, V,N) = c
(
E V 3N

)1/5
,

for some positive constant c.

(a) Show that the entropy is extensive.

(b) Derive the energy fundamental relation

E = E(S, V,N)

and compute the intensive quantities in terms of the extensive quantities:

T = T (S, V,N) , p = p(S, V,N) , µ = µ(S, V,N) .

(c) Find the behaviour of the entropy of the system as T → 0, keeping V and N
fixed. Does the system satisfy the Third Law of Thermodynamics?

2. An ideal monatomic gas consists of N free particles moving in a 3-dimensional box
of volume V at temperature T .

(a) Write down the equation of state of the ideal gas and the total internal energy
of the ideal gas according to the equipartition theorem. Justify the latter
formula.

(b) Calculate the heat capacities CV and Cp at constant volume or pressure, keep-
ing N fixed.

(c) Define a reversible adiabat. Show that the equation for a reversible adiabat in
the (V, p)-plane is pV γ = const, where γ = Cp/CV .

3. (a) Starting from the internal energy E(S, V,N), define the following thermody-
namic potentials by appropriate Legendre transforms:

i. Helmholtz free energy F (T, V,N);

ii. Gibbs free energy G(T, p,N);

iii. Enthalpy H(S, p,N).

(b) Using the form of dE given by the First Law of Thermodynamics, write the
differential expressions for each of the above thermodynamics potentials.

(c) Use (b) at fixed number of particles N to derive the Maxwell relation

∂S

∂p

∣∣∣∣
T

= −∂V
∂T

∣∣∣∣
p

.
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4. Consider a quantum system with discrete states |n〉, and neglect any possible de-
pendence on the volume in the following discussion.

Define the following statistical ensembles, by specifying which quantities are kept
fixed and writing down the appropriate discrete probability distributions p(n):

(a) Microcanonical ensemble.

(b) Canonical ensemble.

(c) Grand canonical ensemble.

5. Consider an isolated system of N non-interacting distinguishable particles, each of
which can sit in either the ground state, with energy E0 = 0, or the excited state,
with energy E1 = ε.

(a) Which quantities specify the macrostate of the system in the microcanonical
ensemble?

(b) How are the microstates that correspond to a given macrostate characterised?
Count the number Ω of such microstates.

(c) Compute the entropy of the system in the thermodynamic limit where the inter-
nal energy E and the total number of particles N are large, using Boltzmann’s
formula and Stirling’s approximation.

6. Consider a quantum system of non-interacting fermions that can occupy discrete
states |r〉.

(a) Write down the Fermi-Dirac distribution for the average number of fermions
〈nr〉 that occupy state |r〉. Which values can 〈nr〉 take and why? How does
the Fermi-Dirac distribution differ from the Bose-Einstein distribution?

(b) Derive the extreme low temperature limit T → 0 of the Fermi-Dirac distibution.
What is its physical interpretation? Give a physical definition of the Fermi
energy EF and provide a mathematical formula for it.
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SECTION B

7. Consider N classical harmonic oscillators in 1 dimension, each with Hamiltonian

H(q, p) =
p2

2m
+

1

2
mω2q2 ,

which are far enough from each other and are therefore distinguishable. Calculate
the thermodynamical properties of the system in the canonical ensemble as follows:

(a) Write down and compute the partition function for a single oscillator Z1(β),
and from this deduce the N -oscillator partition function ZN(β). Is there a
Gibbs factor 1

N !
?

(b) Compute the free energy F (T,N) of the system from the partition function.

(c) Compute the entropy S(T,N) of the system from the partition function.

(d) Compute the internal energy 〈E〉 of the system from the partition function.
Does it obey the equipartition theorem? Justify your answer.

(e) Using the previous formulae, check that the relations F = 〈E〉 − TS and
S = −∂F

∂T

∣∣
V,N

hold.

(f) What is the pressure p of the system and why?

(g) Compute the chemical potential µ of the system.

8. A 1-dimensional random walk describes a particle which moves randomly in a lattice
in 1-dimension with spacing a. The lattice is labelled by a coordinate x = ma, where
m is an integer. The particle starts from x = 0. At every iteration it can move
either one step to the right (m→ m+ 1), with probability r, or one step to the left
(m→ m− 1), with probability s = 1− r.

(a) What is the probability pN(nR) that in N steps the particle moves nR steps
to the right and nL = N − nR steps to the left? Relate the random variable
x, that is the net displacement of the particle after N steps, to the random
variable nR.

(b) Use the result of (a) to calculate the mean value 〈x〉 of the net displacement
of the particle after N steps.

(c) Calculate the variance σ2
x of the net displacement after N steps.

(d) Calculate p̃N(k) = 〈exp(−ikx)〉, the generating function of moments of the net
displacement, and the generating function of cumulants ln p̃N(k).

(e) How do the cumulants depend on the number of steps N? Use this result to
deduce the limiting probability distribution pN=∞(y) for the variable

y =
x− 〈x〉√

N

when N →∞.
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9. A diatomic gas consists of molecules made of two atoms. In addition to the three
translational degrees of freedom of the centre of mass, each molecule can rotate
rigidly about the two axes perpendicular to the axis of symmetry, and vibrate along
the axis of symmetry.

(a) Compute the rotational contribution Z
(c)
rot to the classical partition function of

one gas molecule, using the rotational Hamiltonian

Hrot(θ, φ, pθ, pφ) =
p2θ
2I

+
p2φ

2I sin2 θ
.

Here (θ, φ) are the standard polar and azimuthal angle that parametrise a 2-
sphere in 3 dimensions, pθ and pφ are the conjugate momenta, which can take
any real values, and I is the moment of inertia.

(b) Quantum-mechanically, the rotational Hamiltonian has energy levels

Ej =
~2

2I
j(j + 1) , j = 0, 1, 2, ...,

with degeneracy 2j + 1. Write down the rotational contribution Z
(q)
rot to the

quantum partition function of one gas molecule. Approximate the formula for
high temperatures and recover the classical result computed in (a). What does
high temperature mean here?

(c) Derive the low temperature limit of the quantum rotational partition function

Z
(q)
rot . What is the physical interpretation of this result?

(d) The vibrational modes are described by a 1-dimensional harmonic oscillator,
which quantum-mechanically has energy levels

En = ~ω(n+
1

2
) , n = 0, 1, 2, ...

Calculate the vibrational contribution Z
(q)
vib to the quantum partition function

of a single gas molecule, and find the leading order approximation in the high
temperature limit (which coincides with the classical result). What does high
temperature mean here?

(e) Derive the leading term of Zvib in the low temperature limit. What is the
physical interpretation of this result?
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10. Consider a quantum system where single particles have a discrete spectrum of states
|r〉 with energies Er. The particles satisfy parastatistics : each energy level can be
occupied by at most p particles.

(a) Which values of p correspond to bosons and fermions respectively?

(b) Write down the grand canonical partition function Zr for the single state |r〉
and express it in terms of xr = exp[−β(Er − µ)].

(c) Write down the full grand canonical partition function Z and compute the
average number of particles 〈N〉.

(d) Derive a formula for the average number of particles 〈nr〉 that occupy state |r〉
and check that 〈N〉 =

∑
r〈nr〉.

Substitute into the formula for 〈nr〉 the values of p appropriate for fermions
and bosons and recover the standard formulae for the Fermi-Dirac and the
Bose-Einstein distributions. (To recover the result for bosons, assume that
µ < Er for all r.)
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