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SECTION A

1. Consider the conservation law

ut + uux = 0 for (x, t) ∈ R× (0, T ),

u(x, 0) = e−x
4

for x ∈ R.
(1)

(a) Find the largest value of T ∈ R for which this conservation law has a classical
solution u : R× [0, T )→ R.

(b) Give a sketch of the characteristics of (1) up until time T .

(c) State what it means for u to be a weak solution of (1).

2. Let c, u0 ∈ C1(R), u0 be bounded, and u′0(x)→ 0 as x→ ±∞. Define

I := {s ∈ R : c(u0(s))s < 0}.

Assume that I is nonempty. Let sc ∈ I satisfy

−1

c′(u0(sc))u′0(sc)
= min

s∈I

−1

c′(u0(s))u′0(s)
=: tc.

Let s̃ : R× [0, tc)→ R be the unique function satisfying x = s̃(x, t) + c(u0(s̃(x, t)))t.

(a) State the solution of the conservation law

ut + c(u)ux = 0 for (x, t) ∈ R× (0, tc),

u(x, 0) = u0(x) for x ∈ R.

(You do not need to derive the solution.)

(b) Define xc(t) = sc + c(u0(sc))t. Prove that

lim
t→t−c
|ut(xc(t), t)| =∞.

(c) Show that u satisfies the implicit equation

u(x, t) = u0(x− c(u(x, t))t).
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3. Consider Poisson’s equation in one dimension with Neumann boundary conditions:

−u′′(x) = f(x), x ∈ (a, b), (2)

u′(a) = 0, u′(b) = 0, (3)

where f ∈ C([a, b]).

(a) Show that a necessary condition for (2), (3) to have a solution is∫ b

a

f(x) dx = 0. (4)

(b) Assume that f satisfies (4). Find the unique solution of (2), (3) satisfying
u(a) = 0. Write your solution in the form

u(x) =

∫ b

a

G(x, y)f(y) dy.

4. Consider the elliptic boundary value problem

−(|u′|p−2u′)′ + γu = 0, x ∈ (0, 2π), (5)

u(0) = u(2π) = 0, (6)

where p ≥ 2 and γ ∈ R are constants.

(a) Let γ ≥ 0. Show that (5), (6) has a unique solution.

(b) Now consider the case p = 2, γ < 0. Find a sequence {γn}∞n=1, with γn < 0 and
γn 6= γm for n 6= m, such that, for each n ∈ N, the following boundary value
problem has infinitely many solutions:

−u′′ + γnu = 0, x ∈ (0, 2π),

u(0) = u(2π) = 0.

5. Let Ω ⊂ R2 be open and bounded with smooth boundary. Define E : C1(Ω) → R
by

E[v] =

∫
Ω

√
1 + |∇v|2 dx.

Let g : ∂Ω→ R be a given smooth function and let

V = {ϕ ∈ C1(Ω) : ϕ = g on ∂Ω}.

Suppose that u ∈ C2(Ω) ∩ V minimises E over V :

E[u] = min
v∈V

E[v].

Show that u satisfies the minimal surface equation

div

(
∇u√

1 + |∇u|2

)
= 0 in Ω.
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6. Let c ∈ R, k > 0 be constants.

(a) Recall that the inverse Fourier transform of a function h ∈ L1(R) is defined by

ȟ(x) =
1√
2π

∫ ∞
−∞

h(ξ)eixξ dξ.

For t > 0, define f ∈ L1(R) by

f(ξ) = exp
(
−(kξ2 + icξ)t

)
.

Prove that

f̌(x) =
1√
2kt

exp

(
− 1

4kt
(x− ct)2

)
.

You may use the following, which you do not need to prove: For a > 0,∫
Γ

e−az
2

dz =

∫ ∞
−∞

e−ay
2

dy =

√
π

a

for all complex curves Γ of the form Γ = {x+ ib : x ∈ (−∞,∞)}, b ∈ R.

(b) Consider the transport-diffusion equation

ut + cux = kuxx for (x, t) ∈ R× (0,∞)

with initial condition u(x, 0) = g(x) for x ∈ R, where g ∈ L1(R) ∩ C(R). Use
the Fourier transform and part (a) to derive the following solution:

u(x, t) =
1√

4πkt

∫ ∞
−∞

exp

(
−(x− ct− y)2

4kt

)
g(y) dy.

You may use the following properties of the Fourier transform, which you do
not need to prove:

f1 ∗ f2

∧
=
√

2πf̂1f̂2, f (α)
∧

(ξ) = (iξ)αf̂(ξ).
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SECTION B

7. (i) Consider the Cauchy problem

xux(x, y) + yuy(x, y) = 2u(x, y) for x > 0, y ∈ R, (7)

u(x, y) = f(x, y) for x2 + y2 = 1, x > 0. (8)

(a) Use the method of characteristics to derive the solution u in terms of f .

(b) Now consider the Cauchy problem

xux(x, y) + yuy(x, y) = 2u(x, y) for x > 0, y ∈ R, (9)

u(x, 0) = x2 for x > 0. (10)

Use part (a) to show that the Cauchy problem (9), (10) has infinitely
many solutions. Explain why this does not contradict the local existence
and uniqueness theorem for first-order quasilinear PDEs.

(ii) (a) Let u : R × [0,∞) → [0,∞) be a smooth function satisfying the scalar
conservation law

ut + f(u)x = 0 for (x, t) ∈ R× (0,∞),

where f(u) = 1
2
u2. Define v = u2. Show that v satisfies the scalar conser-

vation law
vt + g(v)x = 0 for (x, t) ∈ R× (0,∞),

where g(v) = 2
3
v

3
2 .

(b) Let

u0(x) =

{
ul if x < 0,
ur if x > 0,

where ul and ur are constants with ul > ur. The weak solution of the
conservation law

ut + f(u)x = 0 for (x, t) ∈ R× (0,∞),

u(x, 0) = u0(x) for x ∈ R

is

u(x, t) =

{
ul if x < 1

2
(ul + ur)t,

ur if x > 1
2
(ul + ur)t.

Let v0 = u2
0. Find the weak solution of the conservation law

vt + g(v)x = 0 for (x, t) ∈ R× (0,∞),

v(x, 0) = v0(x) for x ∈ R.

Does v = u2?
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8. Consider the scalar conservation law

ut + f(u)x = 0 for (x, t) ∈ R× (0,∞),

u(x, 0) = u0(x) for x ∈ R,
(11)

where f(u) = 1
4
u4 and

u0(x) =

{
0 if x < 0,
2 if x > 0.

(a) Write down the equations of the characteristics (you do not need to derive
them from first principles). Sketch the characteristics.

(b) Verify that the following is a weak solution of (11):

u(x, t) =



0 if x < 1
4
u3
mt,

um if 1
4
u3
mt < x < u3

mt,(x
t

) 1
3

if u3
mt ≤ x ≤ 8t,

2 if x > 8t,

where um is any constant satisfying 0 < um < 2.

(c) Does the solution in part (b) satisfy the Lax entropy condition? Justify your
answer.

(d) Find a class of weak solutions of (11) with two rarefaction waves and one shock.
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9. Let Ω ⊂ R2 be open and bounded. Let u ∈ C2(Ω) ∩ C(Ω) satisfy

−∆u+ b · ∇u = f in Ω,

where b : Ω→ R2, f : Ω→ R are continuous.

(a) Assume that f < 0. Prove the following weak maximum principle:

max
Ω

u = max
∂Ω

u.

Hint: You cannot prove this using a mean-value formula. Imitate the proof of
the weak maximum principle for the heat equation.

(b) Now assume b = 0 and f ≤ 0. Use part (a) to prove that

max
Ω

u = max
∂Ω

u.

Hint: Consider functions of the form uε(x) = u(x) − ε(R2 − |x|2) for ε > 0
and R > 0 such that Ω ⊂ BR(0).

(c) Now assume b = 0 and f > 0. Give an example of Ω ⊂ R2, u ∈ C2(Ω)∩C(Ω),
and f ∈ C(Ω) such that

max
Ω

u 6= max
∂Ω

u.

(d) For i ∈ {1, 2}, let ui ∈ C2(Ω) ∩ C(Ω) satisfy

−∆ui + b · ∇ui = fi in Ω,

ui = gi on ∂Ω,

where b : Ω→ R2, fi : Ω→ R, gi : ∂Ω→ R are continuous.

Show that if f2 > f1 and g2 > g1, then u2 > u1.
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10. Let k > 0 be a constant and let u : [a, b] × [0,∞) → R be a smooth function
satisfying the heat equation

ut(x, t)− kuxx(x, t) = f(x) for (x, t) ∈ (a, b)× (0,∞),

u(x, 0) = u0(x) for x ∈ (a, b),

ux(a, t) = ux(b, t) = 0 for t ∈ [0,∞),

where u0 and f are smooth functions and
∫ b
a
f(x) dx = 0. Let v : [a, b]→ R be the

unique solution of

−kvxx(x) = f(x) for x ∈ (a, b),

vx(a) = vx(b) = 0,∫ b

a

v(x) dx =

∫ b

a

u0(x) dx.

Define w(x, t) = u(x, t)− v(x).

(a) Prove the following version of the Grönwall inequality: If E : [0,∞) → R
satisfies Ė ≤ −λE for some constant λ ∈ R, then E(t) ≤ e−λtE(0).

(b) Prove that w satisfies

d

dt

∫ b

a

w2(x, t) dx = −2k

∫ b

a

w2
x(x, t) dx.

(c) Prove that ∫ b

a

u(x, t) dx =

∫ b

a

u0(x) dx ∀ t ≥ 0.

(d) Prove that w → 0 in L2([a, b]) as t→∞.

(e) Similarly, it can be shown that wx → 0 in L2([a, b]) as t→∞ (you do not need
to show this). Prove that w → 0 in L∞([a, b]) as t→∞.
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SECTION C

11. (i) Recall that the Fourier transform of a function ϕ ∈ L1(R) is defined by

ϕ̂(ξ) =
1√
2π

∫ ∞
−∞

ϕ(x)e−ixξ dx.

The Fourier transform of a distribution u ∈ D′(R) is the distribution û ∈ D′(R)
defined by

(û, ϕ) := (u, ϕ̂).

Compute δ̂.

(ii) Let u ∈ D′(R), ψ ∈ C∞(R). Prove that

(uψ)′ = u′ψ + uψ′

in the sense of distributions.

(iii) Let n ∈ N. Define u ∈ D′(R) by

u(x) =
xn

n!
H(x)

where H is the Heaviside function

H(x) =

{
0 if x < 0,
1 if x > 0.

Prove that u(n+1) = δ in the sense of distributions.
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