

EXAMINATION PAPER

Examination Session: May

2017

Year:

Exam Code:

MATH4051-WE01

Title:

General Relativity IV

Time Allowed:	3 hours	
Additional Material provided:	None	
Materials Permitted:	None	
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.
Visiting Students may use diction	onaries: No	

Revision:

SECTION A

- 1. Let $x^{\mu} = (x, y)$ denote Cartesian coordinates on the plane, and let $\tilde{x}^{\mu} = (r, \phi)$ denote polar coordinates, where $x = r \cos \phi$ and $y = r \sin \phi$.
 - (a) If the covector field W has components $W_{\mu} = (-y, x)$ in Cartesian coordinates, compute its components \widetilde{W}_{μ} in polar coordinates.
 - (b) If the vector field V has components $\tilde{V}^{\mu} = (1,0)$ in polar coordinates, compute its components V^{μ} in Cartesian coordinates.
- 2. Consider the metric $ds^2 = x dt^2 2 dt dx x dx^2 dy^2 dz^2$, and the curve given by $t(s) = -s^2/4$, x(s) = s, y = z = 0 for $s \in (0, 1)$.
 - (a) What is the signature of this metric?
 - (b) Compute the quantity $\Delta = g_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu}$, where $\dot{x}^{\mu} = dx^{\mu}/ds$. Is the curve timelike, null or spacelike?
 - (c) Compute the proper length D of the curve.
- 3. State the Bianchi identity, and use it to show that $\nabla^{\mu}R_{\mu\nu} = k\nabla_{\nu}R$, where k is a constant which you should determine. Hence show that if $R_{\mu\nu} = fg_{\mu\nu}$ in a four-dimensional space-time, then the scalar f has to be constant.
- 4. The action of a scalar field ϕ is

$$S[\phi] = \int d^4x \sqrt{-g} \left(g^{\mu\nu} \nabla_\mu \phi \nabla_\nu \phi - V(\phi) \right),$$

where $V(\phi)$ is some function.

- (a) Compute the equation of motion of the scalar field.
- (b) Show that the equation of motion implies $\nabla_{\mu}T^{\mu\nu} = 0$, where

$$T_{\mu\nu} = 2(\nabla_{\mu}\phi)(\nabla_{\nu}\phi) - g_{\mu\nu}[(\nabla_{\alpha}\phi)(\nabla^{\alpha}\phi) - V(\phi)].$$

5. The action of a particle with mass m and electromagnetic charge q is

$$S = \int ds \left(-m \sqrt{g_{\mu\nu} \dot{X}^{\mu} \dot{X}^{\nu}} + q A_{\mu} \dot{X}^{\mu} \right),$$

where A_{μ} is the vector potential.

- (a) Show that the action is invariant under reparametrization $s \to s'(s)$.
- (b) Find the modified geodesic equation obeyed by the charged particle. (You may use known results for the variation of the term in the action containing m.)
- 6. In a matter-dominated FRW universe with $\kappa = 1$ and $\Lambda = 0$, the solution to the Friedmann equation can be written in the parametric form

$$a(\eta) = \frac{a_0}{2} \left(1 - \cos \eta\right), \quad t(\eta) = \frac{a_0}{2} \left(\eta - \sin \eta\right),$$

where a_0 is a constant (which characterizes the maximum size of the universe). A photon is emitted at the big bang. By writing the positive curvature spatial slice as a three-sphere $d\chi^2 + \sin^2 \chi d\Omega^2$, and using η as a time coordinate, show that the photon travels all the way around the universe by the time of the end of the universe i.e. back to the point on the 3-sphere where it started.

SECTION B

- 7. Consider the two-dimensional space-time with local coordinates $(x^0, x^1) = (t, r)$ and metric $ds^2 = r^{-2}(dt^2 dr^2)$, where r > 0.
 - (a) Find the geodesic r = r(t) satisfying r = 1 and dr/dt = 0 at t = 0.
 - (b) Compute the Christoffel symbols $\Gamma^{\mu}_{\alpha\beta}$.
 - (c) Find the vector field V^{μ} which is covariantly-constant along the curve r = 2, with $V^{\mu} = (1,0)$ at (t,r) = (0,2).

- 8. (i) A two-dimensional space-time has the metric $ds^2 = x^2 dt^2 dx^2$. Write out the geodesic equations, and show that the quantity $P = e^t(x\dot{t} + k\dot{x})$ is constant along affinely-parametrized geodesics with tangent vector $V^{\mu} = (\dot{t}, \dot{x})$, for some constant k which you should determine.
 - (ii) Let $x^{\mu}(u, s)$ denote a one-parameter family of geodesics, with s being an affine parameter along each geodesic. Define $V^{\mu} = \partial x^{\mu}/\partial s$ and $U^{\mu} = \partial x^{\mu}/\partial u$. Derive the equation of geodesic deviation, expressing $A^{\alpha} = V^{\mu} \nabla_{\mu} (V^{\nu} \nabla_{\nu} U^{\alpha})$ in terms of V^{μ} , U^{μ} and the Riemann tensor. You may assume without proof that $V^{\mu} \nabla_{\mu} U^{\nu} = U^{\mu} \nabla_{\mu} V^{\nu}$.
 - (iii) If $P_{\mu\nu}$ is a tensor field, show that

$$g^{\mu\beta}[\nabla_{\alpha},\nabla_{\beta}]P_{\mu\nu} = Ag^{\mu\beta}R_{\alpha\beta}P_{\mu\nu} + BR_{\alpha\beta\nu\sigma}P^{\beta\sigma},$$

where A and B are constants which you should determine.

9. Consider the metric produced by a mass distribution in three space-time dimensions (a 3d "star"). We use a rotationally-symmetric metric of the form

$$ds^{2} = e^{2A(r)}dt^{2} - e^{2B(r)}dr^{2} - r^{2}d\theta^{2},$$

where θ is an angular coordinate with periodicity 2π . The nonzero components of the Einstein tensor are

$$G_{tt} = e^{2(A-B)}B'/r, \quad G_{rr} = A'/r, \quad G_{\theta\theta} = e^{-2B}r^2 \left(A'^2 - A'B' + A''\right).$$

We study the Einstein equation sourced by a matter distribution that is pressureless dust at rest at radii r < R, so

$$T_{\mu\nu} = \rho u_{\mu} u_{\nu}, \quad u^{\mu} = e^{-A(r)} \delta^{\mu}_t \quad \text{for } r < R,$$

and is the vacuum $T_{\mu\nu} = 0$ for r > R. R defines the edge of the star and is given.

- (a) Show that A(r) is a constant, and argue that it can be set to zero. Find the most general solution for B(r) when r < R.
- (b) Find a solution to the metric for r > R. Write down a metric in the (t, r, θ) coordinates that solves Einstein's equations everywhere, and is smooth both at the origin at r = 0 and across r = R. Your answer should have no integration constants remaining.
- (c) Find a coordinate transformation to new coordinates (τ, σ, ϕ) to put the metric for r > R in the form $ds^2 = d\tau^2 - d\sigma^2 - \sigma^2 d\phi^2$. In terms of ρ , R, and G, what is the periodicity of the new angular coordinate ϕ ? Describe in words the geometry inside and outside the "star".

- 10. Consider the space-time with metric $ds^2 = r^2 d\eta^2 dr^2$, where r > 0.
 - (a) Write the geodesic equation for massive particles in the form

$$\frac{1}{2}\left(\frac{dr}{ds}\right)^2+V(r)=E,$$

and describe in words the resulting trajectories.

(b) Consider the coordinate transformation to the coordinates (t, x) given by

$$x = r \cosh \eta, \quad t = r \sinh \eta,$$

whose inverse map is

$$\eta = \tanh^{-1}\left(\frac{t}{x}\right), \quad r = \sqrt{x^2 - t^2}.$$

Compute the metric in the (t, x) coordinate system. (Hint: $\frac{d}{dx} \tanh^{-1}(x) = 1/(1-x^2)$).

- (c) What part of the space labeled by (t, x) is covered by the (η, r) coordinates? Draw a picture illustrating this, and indicate r = 0 on the picture. Interpret the trajectories found in part (a) from this point of view.
- (d) Compute the magnitude of the acceleration vector $a^{\nu} \equiv u^{\mu} \nabla_{\mu} u^{\nu}$ of a particle with worldline $r(s) = r_0$, $\eta(s) = s/r_0$, where s is an affine parameter (*i.e.* it is at rest at constant $r = r_0$ in the (η, r) coordinates.)