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SECTION A

1. For a continuous probability density function p(y;#) with parameter vector 6 and
using the notation dy for partial differentiation with respect to the parameters, show
that

E[0plogp(Y;0)] =0

and
Var[0ylog p(Y;0)] = —E[; log p(Y0) ]

when the derivatives are evaluated at the same value of 6 as used to compute the
expectations.

Now consider maximum likelihood estimation of # based on a random sample. Derive
the asymptotic distribution of the maximum likelihood estimator, 6. You may
assume that, asymptotically, 6 — 6y and may treat as exact the second-order Taylor
approximation to the log-likelihood:

L(6) =~ L(6) + D"(0 — 6p) + %(9 —00) H (0 — 6y)

where 6 is the true parameter value, D is the gradient L'(6y) and H the Hessian
L"(6y).

You may use without proof any necessary standard properties of the multivariate
normal distribution. You may also use, but should refer to when used, any standard
theorems from probability such as the law of large numbers and the central limit
theorem.

2. In a two-parameter statistical model, numerical maximisation of the log-likelihood
function L(0) gave

é:(—12) and L”(é):(:gﬁ :Z;)

Explaining your working carefully, make a detailed sketch of the 95% Wald confi-
dence region for 6. Your sketch should include axes in the units used to provide the
numbers in the question.
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3. The full (saturated) log-linear model for a three-way contingency table having R
rows, C' columns and S slices is

log pijs = mige = B+ B + B + 87 + 877 + 87 + 85 + Bl

(a) Taking the term 61.(;3) as your example, explain the constraints which are usually

imposed on the terms in the log-linear model and how this leads to the number
of free parameters (degrees of freedom) for each term.

(b) Define what is meant by the term hierarchical log-linear model and draw a
diagram showing all hierarchical log-linear models, which include all three main
effects, for a three-way contingency table. Highlight in your diagram pairs of
models which differ by a single term.

(c¢) Taking two suitable models from your diagram as an example, explain in detail
how model comparison works using the Akaike information criterion and the
generalised likelihood ratio test. You need not explain how to compute the
likelihood for these models.

(d) Give an example of two models which would not be suitable for use in part(c)
of the question and explain why.

ED01/2017 CONTINUED
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4. The dataframe horseshoe contains the results of a study of nesting horseshoe crabs
(J. Brockman, Ethology, 1996). Each female crab in the study had a male crab in
her nest. The study investigated factors that affect how many other males, called
satellites, the female has residing nearby. Variables thought to affect this include the
female crab’s colour, the condition of its spine, its weight, and its carapace width.
The response variable for each female crab is the number of satellites.

Co | carapace colour (1: light medium; 2: medium; 3: dark medium; 4: dark)

Sp | condition of spine (1: both good; 2: one worn or broken; 3: both worn or broken)
Wi | width of carapace in cm

We | weight in kg

Sa | number of satellite male crabs

Consider the generalized linear model fitted in the R excerpt below.

(a) For each of the variables in the dataframe, state whether it is categorical or
numerical.

(b) Why can we not use a linear model to explain the dependence of Sa on the
other variables?

(¢) For this model, write down expressions for:

e the linear predictor;
e the response function;
e the distributional assumption.

(d) Give a precise numerical interpretation of the estimated parameter for We.

(e) A new female crab is observed, with a dark carapace, carapace width 25.0cm,
and weight 4.5kg. Use the model to predict the expected number of satellite
male crabs for this female.

(f) Does it seem reasonable to treat the colour variable in this way?

> head(horseshoe)
Co Sp Wi We BSa

1 2 3 28.3 3.056 8
2 3 3 22,5 1.55 0
3 1 1 26.0 2.30 9
4 3 3 24.8 2.10 O
5 3 3 26.0 2.60 4
6 2 3 23.8 2.10 O

> model = glm(Sa ~ Co + Wi + We, family = poisson, data = horseshoe)
> model$coefficients

(Intercept) Co Wi We

-0.99307525 -0.16310297 0.05880436 0.34685788
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5. Consider a logistic regression problem with predictor x € R and response y € {0, 1}.
Let the data be {(x;, ;) }ic1..n)- Suppose that max{x; : y; = 0} < min{z; : y; = 1}.

(a) Prove that the maximum likelihood estimate of the linear predictor based on
this data is not finite.

(b) The resulting regression function exists but is not unique. Describe the nature
of the function and its non-uniqueness.

(c) Describe very briefly two circumstances in which the results of the previous two
parts are a problem, and explain in each case what might be done to remedy
the situation.

ED01/2017 CONTINUED
University of Durham Copyright



Page number

| 6 of 11

r
|

Exam code

1 MATH4071-WEO1

r
|

6. The data shown below give the survival times S of n = 48 animals, with four
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animals randomly allocated to each of the 12 possible combinations of 3 poisons
and 4 antidotes. The experiment was part of an investigation to combat the effects
of certain toxic agents.

poison
1 11 I11
antidote antidote antidote
A B C D A B C D A B C D
0.31 0.82 043 045|036 0.92 044 0.56 | 0.22 0.30 0.23 0.30
0.45 1.10 0.45 0.71 029 0.61 035 1.02]0.21 0.37 0.25 0.36
0.46 0.88 0.63 0.66 | 0.40 0.49 0.31 0.71]0.18 0.38 0.24 0.31
0.43 0.72 0.76 0.62|0.23 1.24 040 0.38 |0.23 0.29 0.22 0.33

A GLM was fitted and an analysis of deviance carried out, yielding the (edited) R
code and output below, which you may use to answer the following questions.

(a) Complete the missing values for W, X, Y, and Z.
(b) Provide an estimate of the shape parameter of the response distribution.

(c) Test the model My, which only contains an intercept, against the full model M,
using both antidote and poison, at the 5% level of significance.

(d) In this analysis, R has not treated these data as grouped, but as n = 48 indi-
vidual observations. Explain how a grouped version of this data set would be
obtained, how many observations it would contain, and write down explicitly
the first three rows of the data frame containing the grouped data.

> fit<- glm(S”antidote+poison, data=animals, family=Gamma(link=log))
> anova(fit)

Analysis of Deviance Table

Model: Gamma, link: log

Response: S

Terms added sequentially (first to last)

Df Deviance Resid.Df Resid.Dev

NULL 47 11.5710
antidote W X Y Z
poison 2 5.0973 42 2.4036

> summary (fit)$dispersion
[1] 0.06127824

CONTINUED
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SECTION B

7. The negative binomial distribution, with parameters v > 0 and p € (0,1], has
probability function

[y + x)

PIX = 2;v,p| = )N+ 1)

pY(1—p)* forz=0,1,2,...

The R transcript, shown below and on the following page, shows the distribution
being fitted to a dataset on number of days of absence for each student in a group
of students attending a Los Angeles high school. The data are assumed to be a
random sample from a negative binomial distribution.

(a) Write down the log-likelihood function for § = (¢, p) and show that it can be
expressed in the form used to define the function L shown in the R transcript.

(b) Calculate 99% confidence intervals for both parameters. Explain how you can
tell which parameter estimate is which from the R code.

(¢) The mean of the distribution is u = (1 — p)/p. Compute an approximate 95%
confidence interval for pu.

(d) Determine the profile log-likelihood function for ).
(e) Suppose that the parameterisation (u, o) is of interest, where o2 = ¥ (1 — p)/p>.

(i) Show how to compute the estimated sampling variance matrix of the max-
imum likelihood estimate for this parameterisation. You should do any
necessary mathematical calculations but need not do numerical calcula-
tions.

(ii) Write a short R function to evaluate the log-likelihood for this parameter-
isation, making use of the existing code where possible.

> L = function(theta) {

+ p = theta[1l]

+ psi = thetal[2]

+ n = length(absences)

+ constpart = n * ( psi * log(p) - lgamma(psi) )
+

+

+

+

>

datapartl = sum(lgamma(psi+absences) - lgamma(absences+1))
datapart2 = sum(absences) * log(1l-p)
return(constpart+dataparti+datapart2)

}
negl = function(theta) {

+ return(-L(theta))

+ }

> optim(c(.5, 1), negl, method="BFGS", hessian=TRUE)
$par

[1] 0.1225473 0.9684335

$value
[1] 501.8582

CONTINUED
University of Durham Copyright



I 1 Me, . . - - - --T=======-=-- A
, Page number , Exam code

1 8 of 11 l l MATH4071-WEO1 1

$counts
function gradient
48 14

$convergence
[1] 0

$message
NULL

$hessian

[,1] [,2]
[1,] 12274.565 -1362.7691
[2,] -1362.769 215.9963

8. (i) The full (saturated) log-linear model for a two-way contingency table having
R rows and C columns is

logpyj =iy = B+ B + 5;-2) + /81'(]'12)

(a) Show that the two variables are independent if and only if there exist g;
(t=1,...,R)and h; (j =1,...,C) such that p;; = g;h; for all i and j.
Hence show that they are independent if and only if BZ(JI 2 = 0 for all i and
7. You may assume but should state the usual constraints that are applied
to the terms in the model.

(b) Write down the log-likelihood (assuming random sampling) and use the
method of Lagrange multipliers to show that the maximum likelihood es-
timates in the independence model satisfy p; = y;/n and p; = y;/n.

(ii) The following table shows data for a three-way contingency table. Each vari-
able has two levels.

Carry out one full iteration of the iterative proportional fitting algorithm for
the “no three-way interaction” model.

Is another iteration needed?

ED01/2017 CONTINUED
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9. In an experiment on the number of animals that survived a treatment, the following
results were observed:

dead alive
not treated | 30 25 | m; =55
treated 36 14 | me =50

We can consider this as a data set which is grouped with respect to a binary co-
variate, with values (say) z; = 0 (not treated) and zo = 1 (treated), and with the
response defined through group-wise survival rates: y; = 25/55 and y, = 14/50. We
model this data through a binomial logit model, i.e

r(2) = exp(f1 + [22)
a 1 —+ exp(ﬁl + 522) ’

where y;|z; ~ Bin(m;, 7(2;))/m; (the ‘rescaled’” binomial distribution).

(a) Verify through differentiation of the log-likelihood that the score function is
given by:

S(Bi, Ba) = gl:mz (;) (y; — (%)) .

(b) Solve the score equation.

(c) Show that the expected Fisher information, evaluated at the ML estimate, is
given by
5 A 23.72 10.08
(B, 62) = (10.08 10.08)

(d) Carry out a Wald-test of the null hypothesis Hy : f2 = 0 at the 5% level of
significance.

(e) Compute the maximum likelihood estimate of §; under the constraint S =
0. Hence carry out a likelihood ratio test of Hy : B3 = 0 at the 5% level of
significance.

(f) Give an interpretation of your results.

(g) Explain why Wald tests can be less reliable than likelihood ratio tests.

ED01/2017 CONTINUED
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10. (a) An exponential dispersion family (EDF) of probability distributions has proba-
bility density function of the following form:

Ply | 6,6) = exp [/ =010)

(i) Comment on the roles of the parameters 6 and ¢.

(ii) Prove that the mean p = E[Y]0, ¢| and variance Var[Y'|d, ¢] of a member
of an EDF are given by:

p="u)
Var[Y|0, ¢] = ¢ 0" (6) ,

where a prime indicates a derivative.
(iii) Why is b usually invertible for almost all values of 6, and why is this
important?

(b) The Gamma distribution has density

«

plyla, B) = Fﬁ(a) y* " exp(—By) ,

where y € R>g, and a, 8 € R.
(i) Show that the Gamma distribution is an EDF, identifying all the compo-
nents of the model.
(ii) Exploiting properties of the EDF, calculate the mean of the Gamma dis-
tribution in terms of o and f.

(c) The Gamma distribution is used in a GLM. For data {(z;,y;)}icp ), let fi; be
the estimated value of the expectation of Y at z;, computed using the maximum
likelihood estimate [ of the GLM parameters.

(i) Explain the concept of the saturated version of the model, and derive the
MLEs fi; of E[Y'|6, ¢] for each i.
(ii) Derive an expression for the deviance of the Gamma GLM.

(iii) Why does the deviance fail to be a complete replacement for RSS as a
measure of model adequacy?

ED01/2017 CONTINUED
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SECTION C

The following data record the residue level of a pesticide in 10 apples randomly
sampled from a large orchard:

0.10 0.12 0.16 0.20 0.22 0.24 0.26 0.32 0.46 0.66

The bootstrap will be used to make inference about the population median.

(a) Explain how, by using either dice or a uniform random number generator
or R, you would take a bootstrap re-sample from the data.

(b) The following are the first two of 10000 bootstrap re-samples:
0.12 0.12 0.22 0.24 0.24 0.26 0.26 0.46 0.46 0.66
0.20 0.24 0.26 0.46 0.46 0.66 0.66 0.66 0.66 0.66
The first ten bootstrap statistics were:
0.25 0.56 0.25 0.22 0.22 0.20 0.29 0.22 0.24 0.23

How were these obtained? Be explicit in the case of the first two re-
samples.

(¢) The mean and standard deviation of the 10000 bootstrap statistics were
respectively 0.235 and 0.048. The following table provides a number of
percentiles:

Min. 1% 2.5% 5% 10% 25% 50% 75% 90% 95% 97.5% 99% Max.
0.10 0.14 0.16 0.16 0.18 0.21 0.23 0.25 0.29 0.32 0.36 0.39 0.66

Showing your working, calculate 95% bootstrap confidence intervals for
the population median, using: (1) the basic method; (2) the normal ap-
proximation to the bootstrap sampling distribution.

Suppose that we want to make inference about the population mean from a
sample of size 4 and that the sampled values turn out to be: a — 2b, a — b,
a+ b, a + 2b for some real numbers a and b.

By enumerating the relevant re-samples from the non-parametric bootstrap,
find the basic bootstrap confidence interval with approximately 96% nominal
confidence; you may assume an effectively infinite resample size.

Compare the basic bootstrap confidence interval to the normal approximation
bootstrap confidence interval for the same nominal confidence level and to the
usual ¢-distribution based confidence interval for a population mean. Comment
on the strengths and weaknesses of the three approaches. You may use the
fact that t3 g2 = 3.5.

Suppose that an infinite population is discrete, i.e. it only has M distinct
values: x1,...,x. Denote by p; the proportion of the population which takes
value x;. Let z* be the value of z; with the smallest p; and denote that p; by

*

p*.
Suppose that p* ~ 0.01. We take a sample of size n from the population. How
large does n have to be so that z* has probability 0.95 of appearing at least
once in the sample?

Discuss the implication for applying the bootstrap to learning about a popula-
tion parameter which is strongly dependent on rare values in the population.
Give an example of such a parameter.
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