

EXAMINATION PAPER

Examination Session: May

2017

Year:

Exam Code:

MATH4161-WE01

Title:

Algebraic Topology IV

Time Allowed:	3 hours			
Additional Material provided:	None			
Materials Permitted:	None			
Calculators Permitted:	No	Models Permitted:		
		Use of electronic calculators is forbidden.		
Visiting Students may use dictionaries: No				

Instructions to Candidates:	Credit will be given for: the best FOUR answers from Section and the best THREE answers from S Questions in Section B carry TWICE in Section A.	ection B.	arks as those
-----------------------------	--	-----------	---------------

Revision:

Exam code MATH4161-WE01

The following notations hold in this paper

- \mathbb{R}^n denotes real *n*-space with the usual topology.
- D^{n+1} and S^n denote the closed unit ball and unit sphere in \mathbb{R}^{n+1} with the subspace topology.
- For n a positive integer, \mathbb{Z}/n denotes the quotient group $\mathbb{Z}/n\mathbb{Z}$. Elements of \mathbb{Z}/n are denoted as \bar{k} for $k \in \mathbb{Z}$.

SECTION A

- 1. (a) Define what is meant by a short exact sequence of abelian groups.
 - (b) Give an example of a short exact sequence

 $0 \xrightarrow{} A \xrightarrow{} B \xrightarrow{} C \xrightarrow{} 0$

where B is not isomorphic to $A \oplus C$.

(c) Suppose that

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

is a short exact sequence and that there exists an $s: B \to A$ such that $s \circ f$ is the identity map on A. Show that $B \cong A \oplus C$.

- 2. (a) Define what is meant by a cell complex.
 - (b) Suppose that X is a topological space admitting a cell decomposition whose only non-zero homology groups are

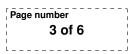
$$H_0(X) = \mathbb{Z} \oplus \mathbb{Z}, H_1(X) = (\mathbb{Z}/2), H_2(X) = \mathbb{Z}, H_3(X) = \mathbb{Z} \oplus (\mathbb{Z}/3).$$

Show that any cell decomposition of X has at least 8 cells.

3. For any point $p \in \mathbb{R}^3$ we write $S^2(p)$ for the 2-sphere formed of all points which are distance 1 away from the point p.

Using any method that you like, determine the homology groups of the space $X \subset \mathbb{R}^3$ where

$$\begin{split} X &= S^2(1,1,1) \cup S^2(1,1,-1) \cup S^2(1,-1,1) \cup S^2(1,-1,-1) \cup \\ S^2(-1,1,1) \cup S^2(-1,1,-1) \cup S^2(-1,-1,1) \cup S^2(-1,-1,-1). \end{split}$$



- 4. For $n \ge 0$ let $C_n = \mathbb{Z}/32$, and for n < 0 let $C_n = 0$. For $n \ge 1$ define $\partial_n \colon C_n \to C_{n-1}$ as multiplication by 8.
 - (a) Show that (C_*, ∂_*) is a chain complex and calculate its homology.
 - (b) Calculate $H^k(\operatorname{Hom}(C_*, \mathbb{Z}/16))$ and $H^k(\operatorname{Hom}(C_*, \mathbb{Z}/64))$ for all $k \ge 0$.
- 5. (a) State the Universal Coefficient Theorem.
 - (b) Using the naturality of the Universal Coefficient Theorem or otherwise, show that every map $f: S^2 \to \mathbb{R}\mathbf{P}^2$ induces the zero homomorphism

$$f^* \colon H^2(\mathbb{R}\mathbf{P}^2; \mathbb{Z}/2) \to H^2(S^2; \mathbb{Z}/2).$$

- 6. (i) Let X be a topological space, $k, l \ge 0$ and $\varphi \in C^k(X; \mathbb{Z})$ and $\psi \in C^l(X; \mathbb{Z})$ singular cochains. State the formula for the cup-product $\varphi \cup \psi \in C^{k+l}(X; \mathbb{Z})$.
 - (ii) Let Y be a finite cell complex whose homology is given by

$$H_k(Y) = \begin{cases} \mathbb{Z} & k = 0, 5\\ \mathbb{Z}/4 & k = 1\\ 0 & \text{otherwise} \end{cases}$$

- (a) Calculate $H^k(Y; \mathbb{Z}/4)$ for $k \ge 0$.
- (b) List the possible cohomology ring structures $H^*(Y; \mathbb{Z}/4)$.

SECTION B

7. (a) The diagram

$$\cdots \longrightarrow A_2 \longrightarrow A_1 \longrightarrow A_0 \longrightarrow A_{-1} \longrightarrow \cdots$$

$$\phi_2 \downarrow \psi_2 \qquad \phi_1 \downarrow \psi_1 \qquad \phi_0 \downarrow \psi_0 \qquad \phi_{-1} \downarrow \psi_{-1}$$

$$\cdots \longrightarrow B_2 \longrightarrow B_1 \longrightarrow B_0 \longrightarrow B_{-1} \longrightarrow \cdots$$

shows two chain maps ϕ_* and ψ_* between the chain complexes A_* and B_* . Define what is meant by a *chain homotopy* between ϕ_* and ψ_* , and show that the existence of a chain homotopy implies that ϕ_* and ψ_* induce the same maps on homology.

(b) Suppose that

is a commutative diagram. We think of

 $0 \longrightarrow A_1 \xrightarrow{f_1} A_0 \longrightarrow 0$ $0 \longrightarrow B_1 \xrightarrow{q_1} B_0 \longrightarrow 0$

and

as chain complexes and of (ϕ_1, ϕ_0) as being a chain map. Show that if the map induced on homology in degree 0 by this chain map is the zero map and A_0 is finitely generated and free abelian, then there exists a map $h : A_0 \to B_1$ such that $g_1 \circ h = \phi_0$.

- (c) It is a reasonable conjecture that if the maps induced on homology in degrees 0 and 1 by (ϕ_1, ϕ_0) are *both* the zero map then there exists a map $h: A_0 \to B_1$ such that both $g_1 \circ h = \phi_0$ and $h \circ f_1 = \phi_1$. Show that this conjecture is false by giving a counterexample in which each of A_0, A_1, B_0, B_1 are finitely generated and free abelian.
- 8. Given a topological space X and a map $f : X \to X$, we form the mapping torus T_f from $X \times [0, 1]$ by gluing $X \times \{0\}$ to $X \times \{1\}$ using f as the gluing map:

$$T_f = (X \times [0, 1])/(x, 0) \sim (f(x), 1).$$

- (a) State the Mayer-Vietoris theorem.
- (b) Let X be such that the homology groups of X agree with the homology groups of a point, and let $f: X \to X$ be any homeomorphism of X. Using the Mayer-Vietoris theorem or otherwise, show that the homology groups of T_f agree with the homology groups of S^1 .
- (c) Now suppose that $X = S^1 \subset \mathbb{C}$ is the unit circle

$$X = \{ z \in \mathbb{C} : |z| = 1 \}$$

and $f: z \mapsto z^5$. Compute the homology groups of T_f .

г I	Page number	-	-	ר ו
L	5 of 6			I
L	5010			I
Ľ				I
L		_	_	J

9. Let X be the quotient space obtained from $[0, 1] \times [0, 1]$ using the identifications on the boundary indicated in Figure 1, that is, we identify the points $(x, 0) \sim (1, x) \sim (1 - x, 1) \sim (0, 1 - x)$ for $x \in [0, 1]$.

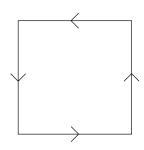


Figure 1: X as a square with identifications on the boundary.

- (a) Calculate $H_k(X)$ for all $k \ge 0$.
- (b) Calculate $H^k(X; \mathbb{Z}/2)$ and $H^k(X; \mathbb{Z}/4)$ for all $k \ge 0$.
- (c) Draw a triangulation of X. Hint: You may want to use four vertices for the circle represented by $(x, 0), x \in [0, 1]$ rather than only three.
- (d) Denote by $C^{\Delta}_{*}(X)$ the simplicial chain complex obtained from your triangulation. For every non-zero element $\alpha \in H^{1}(X; \mathbb{Z}/2)$ write down a cocycle $A \in \operatorname{Hom}(C^{\Delta}_{1}(X), \mathbb{Z}/2)$ which represents α . Hint: Use the subspace Y of X indicated by the dotted lines in Figure 2.
- (e) Determine the cohomology ring $H^*(X; \mathbb{Z}/2)$.

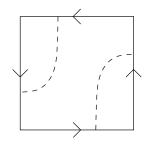
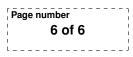


Figure 2: X together with subspace Y.



- 10. (i) Let M be a closed 4-dimensional manifold which admits a triangulation and with $H_0(M) \cong \mathbb{Z} \cong H_4(M)$.
 - (a) State the Poincaré Duality Theorem for M.
 - (b) Assume that $H_1(M) = 0$. Show that $H_3(M) = 0$ and $H_2(M)$ does not contain torsion elements.
 - (c) Let $b: H^2(M; \mathbb{Q}) \times H^2(M; \mathbb{Q}) \to \mathbb{Q}$ be defined by

$$b(x, y) = \langle [M], x \cup y \rangle.$$

Show that b is bilinear, non-degenerate and symmetric. Recall that nondegenerate means that for every $x \neq 0$ there exists a y with $b(x, y) \neq 0$. Determine b for $M = S^2 \times S^2$.

- (ii) Assume $f \colon \mathbb{R}\mathbf{P}^3 \to S^5$ is an embedding.
 - (a) State the Alexander Duality Theorem.
 - (b) Calculate $H_*(S^5 f(\mathbb{R}\mathbf{P}^3))$.