

EXAMINATION PAPER

Examination Session: May

2017

Year:

Exam Code:

MATH4211-WE01

Title:

Number Theory IV

Time Allowed:	3 hours			
Additional Material provided:	None			
Materials Permitted:	None			
Calculators Permitted:	Yes	Models Permitted: Casio fx-83 GTPLUS or Casio fx-85 GTPLUS.		
Visiting Students may use dictionaries: No				

Instructions to Candidates:	Credit will be given for: the best TWO answers from Section the best THREE answers from Section AND the answer to the question in Section B and C carry T those in Section A.	A, on B, ection C. WICE as ma	any marks as
-----------------------------	---	---	--------------

Revision:

SECTION A

1. (i) Prove that there are no integral solutions to the Diophantine equation

$$15x^2 - 7y^2 = 1.$$

- (ii) Let $R = \mathbb{Z}[\sqrt{d}]$, where d < -1 is an odd integer.
 - (a) Prove that 2 is an irreducible element in R.
 - (b) Using the previous part or otherwise, prove that R is not a UFD. [*Hint: You may consider the element* 1 - d].
- 2. (a) What is the full ring of integers \mathcal{O}_{-11} in $K = \mathbb{Q}(\sqrt{-11})$?
 - (b) Put $\alpha = -5 + \sqrt{-11}$ and $\beta = 7 + \sqrt{-11}$. By considering β/α , or otherwise, find $\gamma \in \mathcal{O}_{-11}$ such that

$$N_{K/\mathbb{Q}}(\beta - \gamma \alpha) < N_{K/\mathbb{Q}}(\alpha)$$
.

- (c) Let $R = \mathbb{Z}[\sqrt{-11}]$ and put $J = (3, 1+\sqrt{-11})_R$. Show that $J^2 = (9, a+\sqrt{-11})_R$ for some integer a.
- 3. (i) Let $K = \mathbb{Q}(\sqrt{3})$. Let \mathcal{O}_3 be the number ring of K. Then prove that $\alpha \in \mathcal{O}_3$ is a unit if and only if $|N_{K/\mathbb{Q}}(\alpha)| = 1$.
 - (ii) Let $K = \mathbb{Q}(\alpha)$, where α is a root of the polynomial $x^3 + 14x + 7$. Find the degree $[K : \mathbb{Q}]$ and calculate the trace $Tr_{K/\mathbb{Q}}(\beta)$ for $\beta = \alpha^2 \alpha 1$.
- 4. (i) (a) Give the ring of integers \mathcal{O}_{69} of $\mathbb{Q}(\sqrt{69})$ and find its fundamental unit. (b) Give all solutions in integers x, y, if any, of $x^2 - 69y^2 = 4$.
 - (ii) Let $R = \mathbb{Z}[\sqrt{-74}]$. Factorise the ideal $(13 \sqrt{-74})_R$ as a product of prime ideals. Determine which, if any, of these are principal ideals and show that R has an ideal class of order 5.
- 5. (i) Let $R = \mathbb{Z}[\sqrt{-31}]$. Calculate the norm N(I) of the ideal in R given by

$$I = (2 - \sqrt{-31}, 3 + 2\sqrt{-31})_R$$

and exhibit a fractional ideal F such that IF = R.

(ii) Determine how many solutions there are to the equation

$$x^2 + 2y^2 = 11^{11}$$

such that x is not divisible by 11.

[You may use that $\mathbb{Z}[\sqrt{-2}]$ is a UFD, but you should emphasise at which point you are invoking this.]

6. Let $R = \mathcal{O}_{-23}$.

Consider the ideals $I_1 = (3, -2 + \sqrt{-23})_R$ and $I_2 = (8, 1 + \sqrt{-23})_R$ in R.

- (a) Do I_1 and I_2 lie in the same ideal class?
- (b) Is either one of I_1 or I_2 principal?

CONTINUED

SECTION B

- 7. (i) Let $m \neq n$ be two square-free integers, i.e. they are products of distinct primes. Prove that $\mathbb{Q}(\sqrt{m}) \neq \mathbb{Q}(\sqrt{n})$.
 - (ii) Given any integer n, let $\omega_n = \exp(2\pi i/n)$ denote a primitive n-th root of unity. The fields $\mathbb{Q}(\omega_n) = \mathbb{Q}[\omega_n]$ are called *cyclotomic* extensions of \mathbb{Q} .
 - (a) For any positive integer n, prove that $\omega_{2n}^2 = \omega_n$ and $-\omega_{2n}^{n+1} = \omega_{2n}$.
 - (b) Using the above relations, or otherwise, prove that $\mathbb{Q}[\omega_n] = \mathbb{Q}[\omega_{2n}]$, where n is a positive odd integer.
 - (iii) Give an example of a quadratic extension of $\mathbb Q$ which is also a cyclotomic extension.
- 8. (i) Show that $\mathbb{Z}[\sqrt{-11}]$ contains elements of norm 53 and 103, respectively. How many integer solutions are there to

$$x^{2} + 11y^{2} = 2^{2} \cdot 53^{5} \cdot 103^{7}$$
?

How many integer solutions with x, y positive are there? [You may assume that $\mathbb{Z}[(1 + \sqrt{-11})/2]$ is a UFD and that the only units in this ring are ± 1 .]

- (ii) In this part, you may use that $\mathbb{Z}[i]$ is a UFD.
 - (a) Factorise 2 as a product of primes in $\mathbb{Z}[i]$.
 - (b) Prove that the equation

$$(x+16i)(x-16i) = y^3,$$

would necessarily imply that x + 16i is a cube in $\mathbb{Z}[i]$.

(b) Prove that the Diophantine equation

$$x^2 + 256 = y^3$$

has at most finitely many solutions where x and y are integers. [Carefully justify your method.]

- 9. Determine the ideal class group of $K = \mathbb{Q}(\sqrt{-39})$. [You may assume that every ideal class contains an ideal of norm no more than B_K , where, in the usual notation, $B_K = \left(\frac{4}{\pi}\right)^t \frac{n!}{n^n} \sqrt{|\Delta_K|}$.]
- 10. Let $K = \mathbb{Q}(\theta)$ where θ is a root of $f(x) = x^3 3x 3$.
 - (a) Find the norm and trace of $\theta^2 + 1$.
 - (b) Find the discriminant $\Delta_K(\mathbb{Z}[\theta])$ and show that $\mathcal{O}_K = \mathbb{Z}[\theta]$.
 - (c) Show that the class number of K is 1. [You may use the formula from Question 9.]

SECTION C

11. For this question, you may assume that, if ω is a primitive k-th root of unity, then $[\mathbb{Q}(\omega):\mathbb{Q}] > 2$, when $k \neq 2, 3, 4, 6$.

For an algebraic number θ , let $K = \mathbb{Q}(\theta)$.

- (i) Let $\theta = \sqrt[4]{11}$.
 - (a) Find the minimal polynomial for θ . Using this, or otherwise, find all the conjugates of θ , and find all the embeddings $\sigma_i : K \to \mathbb{C}$.
 - (b) Use the morphisms σ_i to find an embedding of K into a space $\mathbb{R}^r \times \mathbb{C}^s$. What are the integers r and s?
 - (c) What is the cardinality of the set of units in K?
- (ii) Let $\theta = \sqrt{d}$, where d is a square-free integer.
 - (a) Explicitly compute the group of finite order units in K. How does this group depend on d?
 - (b) Find the group structure for the whole group of units of K.