

EXAMINATION PAPER

Examination Session: May

2018

Year:

Exam Code:

MATH1051-WE01

Title:

Analysis I

Time Allowed:	3 hours			
Additional Material provided:	None			
Materials Permitted:	None			
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.		
Visiting Students may use dictionaries: No				

Instructions to Candidates:	Credit will be given for your answers to each question. All questions carry the same marks.		

Revision:

- 1. (a) State what it means for a real sequence $(x_n)_{n \in \mathbb{N}}$ to converge with limit $x^* \in \mathbb{R}$.
 - (b) In each of the following cases evaluate $\lim_{n\to\infty} x_n$ or show that it does not exist. Refer to any results you use.

(i)
$$x_n = \log(2n+1) - \log(2n-1)$$
.

(ii) $x_n = 3^n / n!$.

(iii)
$$x_n = (n^3 + \log(n))^{1/n}$$
.

- 2. (a) Show that any convergent sequence is bounded.
 - (b) Give an example of a bounded sequence that is not convergent; justify your answer.
 - (c) Suppose that $-C \leq x_n \leq C$ for all $n \in \mathbb{N}$ and that $(x_n)_{n \in \mathbb{N}}$ is convergent with limit x^* .

Show that $-C \leq x^* \leq C$.

(d) Calculate $\lim_{n\to\infty} x_n$ or show that it does not exist, where:

$$x_n = \frac{1}{\sqrt{1+n^2} - n}$$

- 3. (a) Let $(a_n)_{n \in \mathbb{N}}$ be defined by $a_1 = 0$ and $a_{n+1} = a_n^2 + 1/4$.
 - (i) Show that $0 \le a_n \le 1/2$ for all $n \in \mathbb{N}$.
 - (ii) Show that (a_n) is monotone increasing.
 - (iii) Prove that $\lim_{n\to\infty} a_n = 1/2$.
 - (b) Let $(b_n)_{n \in \mathbb{N}}$ be defined by $b_1 = 0$ and $b_{n+1} = b_n^2 + 1$. Show that (b_n) is not convergent.
- 4. (a) Write down

$$\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n.$$

(b) Show

$$\lim_{n \to \infty} n \log\left(1 + \frac{1}{n}\right) = 1.$$

State any result you use.

(c) Hence or otherwise show that for any positive real number c we have

$$\lim_{x \to 0} \frac{c}{x} \log\left(1 + \frac{x}{c}\right) = 1.$$

State any result you use.

(d) Evaluate the following limit

$$\log'(c) = \lim_{x \to 0} \frac{\log(c+x) - \log(c)}{x}$$

- 5. (a) State the Bolzano-Weierstrass theorem.
 - (b) Let [a, b] be a closed and bounded real interval. Prove that a continuous function $f : [a, b] \longrightarrow \mathbb{R}$ is bounded.
 - (c) A real number a is defined to be an accumulation point of a sequence $(x_n)_{n \in \mathbb{N}}$ if there exists a subsequence $(x_{n_j})_{j \in \mathbb{N}}$ with $\lim_{j \to \infty} x_{n_j} = a$. Let $(x_n)_{n \in \mathbb{N}}$ be a bounded sequence. Show that the set A of accumulation points of (x_n) is bounded and non-empty.
- 6. (a) State l'Hôpital's theorem.

Use l'Hôpital's theorem to show that for each $n \in \mathbb{N}$ we have

$$\lim_{x \to 1} \frac{1 - x^n}{1 - x} = n.$$

(b) Give a proof by induction that when $x \neq 1$

$$\frac{1-x^n}{1-x} = \sum_{k=1}^n x^{k-1} = 1 + x + x^2 + \dots + x^{n-1}.$$

(c) For which positive numbers x does

$$\sum_{k=1}^{\infty} x^{k-1}$$

converge? Give a proof of your answer.

- 7. (a) Define what it means for an infinite series to be (i) convergent, (ii) absolutely convergent, (iii) conditionally convergent.
 - (b) Show that an absolutely convergent series is convergent.
 - (c) Show that the following series is convergent:

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n+e^{-n}}.$$

Decide whether it is conditionally convergent or absolutely convergent. Justify your answer. (a)

- 8. Determine whether or not the following series converge. In each case justify your answer:
 - $\sum_{n=1}^{\infty} \frac{\log(n)}{n^2};$
 - (b) $\sum_{n=1}^{\infty} \frac{n^2}{2^n};$
 - (c) $\sum_{n=1}^{\infty} \frac{1}{(n+1)\log(n+1)};$ (d)
 - $\sum_{n=1}^{\infty} \left(\frac{1}{e} + \frac{1}{n}\right)^n.$
- 9. (a) Let [a, b] be a real interval and $f : [a, b] \longrightarrow \mathbb{R}$ be a monotone decreasing function. Consider the equidistant partition $\mathcal{P}_n = \{a = x_0, x_1, \ldots, x_n = b\}$ where $x_j = a + j(b a)/n$. Write down the upper and lower Riemann sums $U(f, \mathcal{P}_n)$ and $L(f, \mathcal{P}_n)$. Show that f is Riemann integrable.
 - (b) Show that

$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right) = \log(2).$$

- 10. Let I be an interval in \mathbb{R} .
 - (a) Let $f_n : I \longrightarrow \mathbb{R}$ for $n \in \mathbb{N}$ be a sequence of functions. Give the definition of what it means for f_n to converge uniformly to a function $f : I \longrightarrow \mathbb{R}$.
 - (b) For $k \in \mathbb{N}$ let $g_k : I \longrightarrow \mathbb{R}$ be a sequence of functions and let $f_n : I \longrightarrow \mathbb{R}$ for $n \in \mathbb{N}$ be defined by

$$f_n(x) = \sum_{k=1}^n g_k(x).$$

State the Weierstrass M-test giving conditions under which f_n converges uniformly on the interval I.

(c) Prove that the series

$$f_n(x) = \sum_{k=1}^n \frac{k \cos(kx)}{x^2 + k^4}$$

converges uniformly on \mathbb{R} . State any result you use.