

## **EXAMINATION PAPER**

Examination Session: May

2018

Year:

Exam Code:

MATH1061-WE01

Title:

## Calculus and Probability I paper 1: Calculus

| Time Allowed:                              | 1 hour 30 minutes |                                                                  |  |  |
|--------------------------------------------|-------------------|------------------------------------------------------------------|--|--|
| Additional Material provided:              | None              |                                                                  |  |  |
| Materials Permitted:                       | None              |                                                                  |  |  |
| Calculators Permitted:                     | No                | Models Permitted:<br>Use of electronic calculators is forbidden. |  |  |
| Visiting Students may use dictionaries: No |                   |                                                                  |  |  |

| Instructions to Candidates: | Credit will be given for your answers to each question.<br>All questions carry the same marks. |  |  |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|
|                             |                                                                                                |  |  |  |  |
|                             |                                                                                                |  |  |  |  |
|                             |                                                                                                |  |  |  |  |
|                             |                                                                                                |  |  |  |  |

**Revision:** 

1. (a) Without using Taylor series or L'Hôpital's rule, calculate the limit

$$\lim_{x \to \infty} \left( \sqrt{4x^2 + 3x + 1} - 2x \right).$$

(b) Use Taylor series to calculate the limit

$$\lim_{x \to 0} \frac{\log(1+x)}{e^{2x} + \tan x - \cos x}.$$

- (c) At  $x = \pi/2$  a function g(x) is continuous but is not differentiable. Show that the function  $f(x) = g(x) \cos x$  is differentiable at  $x = \pi/2$ .
- 2. (a) Prove that there is at least one solution in the interval  $(0, \pi/2)$  of the equation f''(x) = 0, where

$$f(x) = \int_{2}^{\sin^2 x} \frac{e^t \log(1+t)}{3+t^2} dt.$$

(b) For integer  $n \ge 0$  define

$$I_n = \int_1^e (\log x)^n \, dx.$$

Derive a recurrence relation between  $I_n$  and  $I_{n-1}$ .

3. (a) Solve the initial value problem

$$xyy' + 4x^2 + y^2 = 0, \qquad y(1) = -2.$$

(b) Find the general solution of the ordinary differential equation

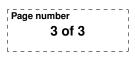
$$y'' + 2y' + 5y = 16e^{-3x}.$$

4. (a) Apply the change of variable  $x = e^u \sin(2v)$ ,  $y = e^u \cos(2v)$  to calculate the double integral

$$\iint_D (x^2 + y^2) \, dx dy,$$

where D is the disc given by  $x^2 + y^2 \leq 1$ .

(b) Consider the function  $f(x, y) = (x - y - 1)^2 + (x + y)^2$ . Calculate  $\nabla f$  (the gradient of f) and hence identify any stationary points.



5. The function f(x) has period  $4\pi$ , that is  $f(x + 4\pi n) = f(x)$  for all integer n, and is given by

Exam code

MATH1061-WE01

$$f(x) = \begin{cases} -1 & \text{if } -2\pi < x < -\pi \\ 0 & \text{if } |x| \le \pi \\ 1 & \text{if } \pi < x < 2\pi \end{cases}$$

- (a) Sketch the graph of f(x) for  $x \in [-4\pi, 4\pi]$ , including open and closed circles to indicate whether specific points are contained in the graph.
- (b) Show that the Fourier series of f(x) is equal to

$$\sum_{m=1}^{\infty} \frac{2}{(2m-1)\pi} \bigg( \sin\big((2m-1)x/2\big) - \sin\big((2m-1)x\big) \bigg).$$

(c) By evaluating the Fourier series at  $x = \pi$ , determine the value of

$$\sum_{m=1}^{\infty} \frac{(-1)^m}{2m-1}.$$

(d) Apply Parseval's theorem to determine the value of

$$\sum_{m=1}^{\infty} \frac{1}{(2m-1)^2}.$$