

EXAMINATION PAPER

Examination Session: May

2018

Year:

Exam Code:

MATH1071-WE01

Title:

Linear Algebra I

Time Allowed:	3 hours				
Additional Material provided:	None				
Materials Permitted:	None				
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.			
Visiting Students may use dictionaries: No					

Instructions to Candidates:	Credit will be given for your answers All questions carry the same marks. Use a separate answer book for each	to each ques	stion.

Revision:

SECTION A

Use a separate answer book for this Section.

1. (a) Find the inverse of the matrix

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & 3 & 2 \end{pmatrix}$$

(b) Compute the determinant of the matrix

2	1	1	5	-3	7
1	0	1	29	-11	23
4	2	-1	17	-19	31
0	0	0	2	1	-1
0	0	0	3	1	1
$\setminus 0$	0	0	0	-2	1/

2. (a) Give the equation of the plane Π which contains the vectors

$$\begin{pmatrix} 1\\0\\3 \end{pmatrix}, \begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \begin{pmatrix} 2\\1\\0 \end{pmatrix}$$

in the form ax + by + cz = d.

(b) Find the shortest distance between the origin $\begin{pmatrix} 0\\0\\0 \end{pmatrix}$ and the plane Π .

3. For each value of $a \in \mathbb{R}$, find the set of solutions to the following system of linear equations.

$$2x + ay + z = -1,$$

$$x - y + 3z = 1,$$

$$-x + 2y + 2z = 2.$$

- 4. (a) Let $\phi: V \to W$ be a linear map between two vector spaces. Define the *image* of ϕ and show that this is a subspace of W.
 - (b) Let $\mathbb{R}[x]_3$ be the vector space of polynomials of degree at most 3 and let $M_2(\mathbb{R})$ be the vector space of 2×2 matrices with real entries. Consider the linear function $\Phi : \mathbb{R}[x]_3 \to M_2(\mathbb{R})$ given by

$$\Phi(f) = \begin{pmatrix} f(0) & f'(0) \\ f(1) & f'(1) \end{pmatrix}$$

(where we write f' for the first derivative of f).

Find the rank and nullity of Φ , giving justification for your answer and quoting any theorems that you use.

5. Let $\mathbb{R}[x]_3$ be the vector space consisting of polynomials of degree at most 3. Consider the linear function $T : \mathbb{R}[x]_3 \to \mathbb{R}[x]_3$ given by

Exam code

MATH1071-WE01

$$T(p(x)) = xp'(x) - p(x+1),$$

where we write p' for the first derivative of p.

- (a) Write down the matrix of T with respect to the standard basis of $\mathbb{R}[x]_3$.
- (b) Determine the rank and nullity of T.

SECTION B

Use a separate answer book for this Section.

6. Let A be the matrix

$$A = \begin{pmatrix} -32 & 24\\ -40 & 32 \end{pmatrix}$$

Find a matrix B such that $A = B^3$.

7. Let V be the vector space $\mathbb{R}[x]_3$ of real polynomials of degree at most three and let $\mathcal{L}: V \mapsto V$ be the linear operator

$$\mathcal{L}(p(x)) = p'(x) + p(x+2)$$

with $p(x) \in \mathbb{R}[x]_3$ and p'(x) = dp(x)/dx. Write down the matrix M, representing \mathcal{L} on V, using the standard basis $\{1, x, x^2, x^3\}$, and then find the eigenvalues, the eigenvectors, and the eigenfunctions.

8. Show that

$$(\mathbf{x}, \mathbf{y}) = x_1 y_1 + x_2 y_1 + x_1 y_2 + 2x_2 y_2 + x_3 y_2 + x_2 y_3 + 3x_3 y_3$$

defines an inner product on $V = \mathbb{R}^3$ and then find the orthogonal complement to the vector subspace given by

$$U = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$$

with respect to this inner product.

- 9. (i) If A is an $n \times n$ matrix, show that A and its transpose A^t have the same eigenvalues.
 - (ii) If B is an $n \times n$ hermitian matrix, show that its eigenvalues are real numbers.
- 10. Let

$$G = \{I, A, B\}$$

where I denotes the 2×2 identity matrix while

$$A = \frac{1}{2} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix} ,$$
$$B = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} .$$

Show that G is a group under matrix multiplication, which you may assume is associative. Present another group of the same order which is isomorphic to G and give explicitly an isomorphism between the two.