

EXAMINATION PAPER

Examination Session: May

2018

Year:

Exam Code:

MATH2011-WE01

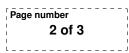
Title:

Complex Analysis II

Time Allowed:	3 hours			
Additional Material provided:	None			
Materials Permitted:	None			
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.		
Visiting Students may use dictionaries: No				

the best FOUR answers from Section A	Instructions to Candidates:		ection B. as many ma	arks as those		
L THE DEST FUTHE ANSWERS from Section A		the best FUUR answers from Section	IA			
			.,.			
		and the heat TUDEE answers from C	action D			
		and the best INKEE answers from Section B.				
and the best THREE answers from Section B.						
and the best THREE answers from Section B.		-	as many ma	irks as those		
and the best THREE answers from Section B. Questions in Section B carry TWICE as many marks as those						
and the best THREE answers from Section B. Questions in Section B carry TWICE as many marks as those						
and the best THREE answers from Section B. Questions in Section B carry TWICE as many marks as those						
and the best THREE answers from Section B. Questions in Section B carry TWICE as many marks as those						
and the best THREE answers from Section B. Questions in Section B carry TWICE as many marks as those						
and the best THREE answers from Section B. Questions in Section B carry TWICE as many marks as those						
and the best THREE answers from Section B. Questions in Section B carry TWICE as many marks as those						
and the best THREE answers from Section B. Questions in Section B carry TWICE as many marks as those			Desided as			

Revision:



SECTION A

- 1. (a) Define what it means for a complex valued function f(z) defined on the complex plane to be:
 - (i) complex differentiable at a point z_0 ;
 - (ii) holomorphic at a point z_0 .
 - (b) State the Cauchy-Riemann equations, and use them to find where the function

$$f(x+iy) = x^3 - 3xy^2 + y^3 - 4xy - 3y + i(x^3 + 3x^2y - y^3 - x^2 - 2y^2)$$

is complex-differentiable and where it is holomorphic. State carefully any results from the module that you use.

- 2. (a) Define what is meant by an open ball and an open set in a metric space (X, d). Show that an open ball in a metric space is an open set.
 - (b) Let x and y be two different points in a metric space X. Show that there exist two open *disjoint* sets containing x and y respectively.
- 3. State what it means for a real-valued function defined on \mathbb{C} to be harmonic. Show that the function $u(x, y) = 3xy^2 - 4xy^2 - x^3$ is harmonic, and find its harmonic conjugate function v(x, y) (that is to say, a real-valued function v(x, y) such that f(z) = u(x, y) + iv(x, y) is holomorphic).
- 4. (a) State Liouville's theorem.
 - (b) Deduce from Liouville's theorem that if p(z) is a nonconstant polynomial with complex coefficients then there is $z \in \mathbb{C}$ such that p(z) = 0.
- 5. (a) State Rouché's theorem.
 - (b) Fix R > 0. Prove that if N is sufficiently large, depending on R, then

$$\sum_{k=0}^{N} \frac{z^k}{k!} = 0$$

has no solutions $z \in D(0, R)$. You can use any properties of the exponential function that you like, provided they are stated clearly.

- 6. (a) State the complex version of the fundamental theorem of calculus.
 - (b) Using the definition of contour integrals (i.e., without using residues), compute for r > 0

$$\oint_{|z|=r} \frac{1}{z} dz$$

(c) Explain the answer you obtained for

$$\oint_{|z|=r} \frac{1}{z} dz$$

in terms of the residues of $g(z) = z^{-1}$.

(d) Deduce from parts (a) and (b) that $g(z) = z^{-1}$ has no holomorphic antiderivative on any annulus

$$A_r = \{ z \in \mathbb{C} : \frac{r}{2} < |z| < 2r \}, \quad r > 0.$$



SECTION B

- 7. (a) (i) Find the unique Möbius transformation f(z) which maps the ordered set of points $\{1, -1, i\}$ to the ordered set of points $\{\infty, 0, -i\}$.
 - (ii) Find the image of the region

$$R = \{ z \in \mathbb{C} : |z| < 1, \operatorname{Im}(z) > 0 \}$$

under the map f(z).

- (iii) Show that the map $g : z \mapsto z^2$ is conformal on the image f(R), then demonstrate that the function $g \circ f$ defines a conformal map from R to the upper half-plane Im(z) > 0. State any results from the module that you use.
- (b) Prove that any Möbius transformation associated with a matrix from the set $SL_2(\mathbb{R})$ (that is, the set of real-valued 2×2 matrices with unit determinant) maps the upper half-plane Im(z) > 0 to itself.
- 8. (a) (i) Define what it means for a sequence $\{f_n\}$ of functions to converge pointwise and to converge uniformly on a set X of complex numbers.
 - (ii) Show that the sequence $\{z^{-n}\}$ converges pointwise, but not uniformly, on |z| > 1. State any results from the module that you use.
 - (b) State the Weierstrass M-test. Given $0 < r < R < \infty$, show that the series

$$\sum_{n=1}^{\infty} \frac{(z+\frac{1}{z})^n}{n!}$$

converges uniformly on $\{z \in \mathbb{C} : r < |z| < R\}$. Thus, show that the series converges on the punctured complex plane $z \neq 0$ to a continuous function. Argue carefully and give a statement of any result you use.

- 9. (a) State Cauchy's Residue Theorem for simple closed curves.
 - (b) Evaluate the integral

$$\int_{-\infty}^{\infty} \frac{\cos(\pi x)}{x^2 + 1} dx,$$

stating clearly any results that you use.

- 10. Let D = D(0, 1) be the open unit disc in the complex plane and suppose that f is holomorphic on D with f(0) = 0 and $|f(z)| \le 1$ for all $z \in D$.
 - (a) Explain why $g(z) = \frac{f(z)}{z}$ can be extended to a well defined holomorphic function on D.
 - (b) For each 0 < r < 1, prove $|g(z)| \le \frac{1}{r}$ for $z \in D(0, r)$.
 - (c) Prove that $|g(z)| \leq 1$ for all $z \in D$ and deduce that for all $z \in D$, $|f(z)| \leq |z|$.
 - (d) Show that if either |f'(0)| = 1 or |f(z)| = |z| for some nonzero $z \in D$, then f(z) = az for all $z \in D$, for some constant a with |a| = 1.