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SECTION A

1. (a) Can 15400 be written as the sum of two squares? Justify your answer.

(b) Write 2952 as the sum of two squares.

2. (a) Prove that if (x, y, z) is a primitive Pythagorean triple, then x and y can’t both
be even.

(b) Prove that if (x, y, z) is a Pythagorean triple, then x and y can’t both be odd.

(c) Assume that (154, y, z) is a primitive Pythagorean triple. Find y and z. (Hint:
Use the explicit formula for primitive Pythagorean triples.)

3. (a) Find the orders of all integers between 1 and 10 modulo 11, that is, find
ord 11(n), for n = 1, 2, . . . , 10.

(b) Which integers between 1 and 10 are primitive roots modulo 11?

(c) How many primitive roots are there modulo 41? Justify. (Hint: This is part
of the statement and proof of the existence of primitive roots in the lectures.)
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SECTION B

4. Let ϕ denote the Euler ϕ-function.

(a) State Euler’s theorem.

(b) Compute ϕ(51000).

(c) Find a solution x ∈ N to x3 ≡ 2 (mod 51).

(d) Find the two last digits of 334444.

5. (a) You are given that 104281 is a prime number. Evaluate the Legendre symbol( −1
104281

)
using Euler’s criterion, or otherwise.

(b) Evaluate the Legendre symbols
(

2
3

)
and

(
2
23

)
.

(c) Determine whether the congruence x2 ≡ −2 (mod 71) has a solution or not.

(d) Suppose that p > 3 is a prime. Show that if p ≡ ±1 (mod 12), then
(

3
p

)
= 1.

6. (a) Find the simple continued fraction expansion of
√

41 and write it in the form
[a0; a1, . . . , an].

(b) Compute the numbers pk and qk associated to the simple continued fraction of√
41, for k = 0, 1, 2, 3, 4, and find a rational number a ∈ Q such that∣∣∣√41− a

∣∣∣ < 0.0002.

(c) Let F0 = F1 = 1 and Fn = Fn−1 + Fn−2, for all n ∈ N with n ≥ 2. Then
F0, F1, F2, . . . is the so-called Fibonacci sequence. Find the simple continued
fraction [a0; a1, . . . , an] whose convergent pk/qk equals Fk+1/Fk, for all k =
0, 1, 2, . . . .

(d) Find limk→∞ Fk/Fk−1.
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