

EXAMINATION PAPER

Examination Session: May

2018

Year:

Exam Code:

MATH2617-WE01

Title:

Elementary Number Theory II

Time Allowed:	2 hours			
Additional Material provided:	None			
Materials Permitted:	None			
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.		
Visiting Students may use dictionaries: No				

Instructions to Candidates:	Credit will be given for the best TWO and the best TWO answers from Sec Questions in Section B carry ONE an marks as those in Section A.	answers fro etion B. d a HALF tir	m Section A nes as many

Revision:

SECTION A

- 1. (a) Can 15400 be written as the sum of two squares? Justify your answer.
 - (b) Write 2952 as the sum of two squares.
- 2. (a) Prove that if (x, y, z) is a primitive Pythagorean triple, then x and y can't both be even.
 - (b) Prove that if (x, y, z) is a Pythagorean triple, then x and y can't both be odd.
 - (c) Assume that (154, y, z) is a primitive Pythagorean triple. Find y and z. (Hint: Use the explicit formula for primitive Pythagorean triples.)
- 3. (a) Find the orders of all integers between 1 and 10 modulo 11, that is, find ord $_{11}(n)$, for n = 1, 2, ..., 10.
 - (b) Which integers between 1 and 10 are primitive roots modulo 11?
 - (c) How many primitive roots are there modulo 41? Justify. (Hint: This is part of the statement and proof of the existence of primitive roots in the lectures.)

SECTION B

- 4. Let φ denote the Euler φ -function.
 - (a) State Euler's theorem.
 - (b) Compute $\varphi(51000)$.
 - (c) Find a solution $x \in \mathbb{N}$ to $x^3 \equiv 2 \pmod{51}$.
 - (d) Find the two last digits of 33^{4444} .
- 5. (a) You are given that 104281 is a prime number. Evaluate the Legendre symbol $\left(\frac{-1}{104281}\right)$ using Euler's criterion, or otherwise.
 - (b) Evaluate the Legendre symbols $\left(\frac{2}{3}\right)$ and $\left(\frac{2}{23}\right)$.
 - (c) Determine whether the congruence $x^2 \equiv -2 \pmod{71}$ has a solution or not.
 - (d) Suppose that p > 3 is a prime. Show that if $p \equiv \pm 1 \pmod{12}$, then $\left(\frac{3}{p}\right) = 1$.
- 6. (a) Find the simple continued fraction expansion of $\sqrt{41}$ and write it in the form $[a_0; \overline{a_1, \ldots, a_n}]$.
 - (b) Compute the numbers p_k and q_k associated to the simple continued fraction of $\sqrt{41}$, for k = 0, 1, 2, 3, 4, and find a rational number $a \in \mathbb{Q}$ such that

$$\left|\sqrt{41} - a\right| < 0.0002.$$

- (c) Let $F_0 = F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$, for all $n \in \mathbb{N}$ with $n \geq 2$. Then F_0, F_1, F_2, \ldots is the so-called Fibonacci sequence. Find the simple continued fraction $[a_0; \overline{a_1, \ldots, a_n}]$ whose convergent p_k/q_k equals F_{k+1}/F_k , for all $k = 0, 1, 2, \ldots$
- (d) Find $\lim_{k\to\infty} F_k/F_{k-1}$.