

EXAMINATION PAPER

Examination Session: May

2018

Year:

Exam Code:

MATH2627-WE01

Title:

Geometric Topology II

Time Allowed:	2 hours						
Additional Material provided:	None						
Materials Permitted:	None						
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.					
Visiting Students may use dictionaries: No							

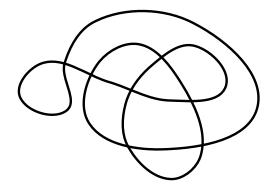
Instructions to Candidates:	Credit will be given for the best TWO answers from Section A and the best TWO answers from Section B. Questions in Section B carry ONE and a HALF times as many marks as those in Section A.

Revision:

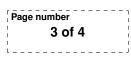
Page number																
	2 of 4															
i.																
L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•

SECTION A

- 1. (a) List the Reidemeister moves.
 - (b) Add over/underpasses to the crossings of the following diagram to make it a diagram of the unknot. Briefly explain why your choices have produced the unknot.

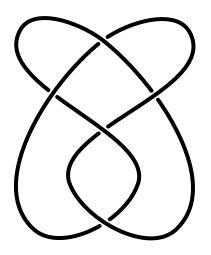


- (c) Show that the standard diagram of the figure-8 knot can be turned into a diagram of the unknot by flipping the roles of the over/underpass at a single crossing.
- 2. (a) What is the *writhe* of an oriented link diagram?
 - (b) Does the writhe of a *knot* diagram (one of a single component) depend on the orientation assigned to the knot? Is the writhe invariant under any of the Reidemeister moves? Justify your answers.
 - (c) Repeat the above question but for oriented link diagrams: does the writhe of an oriented link depend on the orientations we assign to its components? Is the writhe invariant under any of the Reidemeister moves? Justify your answers.
 - (d) Prove, using whichever techniques from the course that you wish, that there are infinitely many links of two components up to isotopy.
- 3. (a) Apply Seifert's algorithm to the standard diagram of the trefoil knot. What is the genus of this surface?
 - (b) Why can we be sure that the genus of this surface does equal the genus of the trefoil knot?
 - (c) Draw another diagram of the trefoil knot so that applying Seifert's algorithm produces a surface of different genus to that of the trefoil.

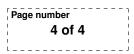


SECTION B

- 4. (a) State the defining relations of the bracket polynomial. Define the Jones polynomial.
 - (b) How are the Jones polynomials of a knot and of the knot's mirror image related? Prove this relationship.
 - (c) Calculate the Jones polynomial of the following knot. Is this knot achiral?



- 5. (a) What is a simplicial complex in \mathbb{R}^n ? What is a triangulation of a subspace $X \subseteq \mathbb{R}^n$?
 - (b) Suppose that \mathcal{K} is a simplicial complex in \mathbb{R}^n which is a union of two subsets \mathcal{L} and \mathcal{M} which are both also simplicial complexes (these are called *subcomplexes*). Prove that their intersection $\mathcal{L} \cap \mathcal{M}$, if non-empty, is also a simplicial complex. Find a relationship between the Euler characteristics of \mathcal{K} , \mathcal{L} , \mathcal{M} and $\mathcal{L} \cap \mathcal{M}$.
 - (c) State and prove the formula for the Euler characteristic of Σ_g , the surface of genus g.
 - (d) A football is stitched together from faces that are pentagons (5-sided polygons) and hexagons (6-sided polygons). It is done in such a way that any two faces, if they intersect at all, intersect along a common edge, and so that at each vertex precisely 3 faces meet. See the figure below. How many pentagons must be used?



- 6. (a) Explain how to define the *winding number* of a continuous map $\gamma: S^1 \to S^1$.
 - (b) Show that the following function has a well defined winding number and calculate it:

$$\gamma(z) = \frac{3\overline{z}^3 - 4\overline{z}^2 + 2\overline{z}}{|3\overline{z}^3 - 4\overline{z}^2 + 2\overline{z}|}.$$

- (c) Briefly explain how we define the index of a vector field at an isolated singularity on an orientable surface.
- (d) For each of the following surfaces, either draw a vector field with precisely two singularities of equal, non-zero index, or give a justification as to why such a vector field can not exist:
 - i. S^2 .
 - ii. The torus.
 - iii. The surface of genus 2.