

EXAMINATION PAPER

Exam Code:

Year:

May		2018			MATH3011-WE01		
Title: Analysis III							
Time Allowed:		3 hours					
Additional Material prov	ided:	None					
Materials Permitted:		None					
Calculators Permitted:		No	Models Permitted: Use of electronic calculators is forbidden.				
Visiting Students may use dictionaries: No							
Instructions to Candidat	es:	Credit will be given for: the best FOUR answers from Section A and the best THREE answers from Section B. Questions in Section B carry TWICE as many marks as those in Section A. Revision:					
						Revision:	

Examination Session:

SECTION A

- 1. (a) Define what means for a set to be countable.
 - (b) Let $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\} \subset \mathbb{R}$. Show that $\mathbb{Q}[\sqrt{2}]$ is countable.
 - (c) Show that the set of all infinite sequences of natural numbers is uncountable.
- 2. Let $\{a_n\}$ be a sequence of real numbers, and let A be the set of all elements of $\{a_n\}$.
 - (a) Define $\limsup a_n$.
 - (b) Show that $\sup A \ge \limsup a_n$.
 - (c) Assume that $\limsup a_n \in A$. Does this imply that $\sup A \in A$?
- 3. (a) Define what it means for a set $E \subset \mathbb{R}$ to be measurable.
 - (b) Show that if $E \subset \mathbb{R}$ is measurable and bounded and $\varepsilon > 0$, then there exists a finite collection $\{E_1, \ldots, E_n\}$ of mutually disjoint measurable sets such that $\bigcup_{i=1}^n E_i = E$ and $m(E_i) \leq \varepsilon$ for all $i = 1, \ldots, n$.
 - (c) Is the assertion of (b) true if E is unbounded of finite measure?
- 4. (a) Define what means for $f: \mathbb{R} \to \mathbb{R}$ to be measurable.
 - (b) Prove that $f(x) := \sin(3x)$ is measurable. You may use that open intervals are measurable.
 - (c) Let $f : \mathbb{R} \to \mathbb{R}$ be measurable, $a \in \mathbb{R}$ and define the function $g : \mathbb{R} \to \mathbb{R}$ by g(x) := f(x a). Prove that g is measurable.
- 5. (a) Define $\int f$ for a nonnegative measurable function $f: \mathbb{R} \to \mathbb{R}$.
 - (b) Prove that for measurable functions f, g with $0 \le f(x) \le g(x)$ we have $\int f \le \int g$.
 - (c) Let f be as in (a), assume that $\int f = 0$, c > 0, and $A_c := \{x \in \mathbb{R} | f(x) > c\}$. Prove that $m(A_c) = 0$, where m denotes the Lebesgue measure of \mathbb{R} .
- 6. (a) State the Lemma of Fatou.
 - (b) Let

$$f_n(x) = \begin{cases} 0, & x \le n; \\ 1, & x > n. \end{cases}$$

Do the **assumptions** of the Lemma of Fatou apply to the sequence? Prove your answer.

(c) Does the **conclusion** of the Lemma of Fatou apply to the sequence f_n as in (b)? Prove your answer.

SECTION B

- 7. (a) Define the outer measure $m^*(E)$ of a set $E \subseteq \mathbb{R}$.
 - (b) Use the definition (a) to show that the outer measure is monotone, i.e. $m^*(A) \le m^*(B)$ for $A \subseteq B$.
 - (c) Show that a set $E \subseteq \mathbb{R}$ is measurable if and only if for every $\varepsilon > 0$ there exist an open set U and a closed set F such that $F \subseteq E \subseteq U$ and $m^*(U \setminus F) < \varepsilon$.
 - (d) Let $E \subseteq \mathbb{R}$ have finite outer measure. Show that there exists a countable intersection G of open sets such that $E \subseteq G$ and $m^*(E) = m^*(G)$. Does this imply that $m^*(G \setminus E) = 0$?
- 8. A set $A \subseteq \mathbb{R}$ is called *nowhere dense* if every open non-empty set $U \subseteq \mathbb{R}$ has an open non-empty subset $U_0 \subseteq U$ such that $U_0 \cap A = \emptyset$. A set $B \subseteq \mathbb{R}$ is called *dense* if the closure of B coincides with \mathbb{R} .
 - (a) Let $N \in \mathbb{N}$. Show that the set $\{\frac{p}{q} \mid p, q \in \mathbb{N}, p \leq N\}$ is nowhere dense.
 - (b) Let $B \subseteq \mathbb{R}$ be dense. Is it true that $\mathbb{R} \setminus B$ has to be nowhere dense?
 - (c) Let $A \subseteq \mathbb{R}$ be nowhere dense. Is it true that $\mathbb{R} \setminus A$ has to be dense?
 - (d) Show that for every $\varepsilon > 0$ there exists a nowhere dense set $E \subset \mathbb{R}$ such that $m^*(\mathbb{R} \setminus E) < \varepsilon$.
- 9. (a) Define the collection of functions $L^1([0, 2\pi])$ and the collection of functions $L^2([0, 2\pi])$.
 - (b) Prove or disprove by counterexample the following claim: $L^1([0,2\pi]) \subset L^2([0,2\pi])$.
 - (c) State the Dominated Convergence Theorem.
- 10. (a) Define an inner product on $L^2([0,2\pi])$ and define what it means that $L^2([0,2\pi])$ is a Hilbert space.
 - (b) State and prove the Bessel Inequality on the Hilbert space $L^2([0,2\pi])$.
 - (c) Define functions $f_n : \mathbb{R} \to \mathbb{R}$ by $f_n(x) = (1/n)\chi_{[0,n]}$ and f(x) = 0. Here, $\chi_{[0,n]}$ has value 1 on [0,n] and vanishes elsewhere. Show that f_n converges uniformly to f but that $\lim \int f_n \neq \int f$. Why does this not contradict the Monotone Convergence Theorem?