

EXAMINATION PAPER

Examination Session: May

2018

Year:

Exam Code:

MATH3021-WE01

Title:

Differential Geometry III

Time Allowed:	3 hours	
Additional Material provided:	None	
Materials Permitted:	None	
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.
Visiting Students may use dictionaries: No		

Instructions to Candidates: Credit will be given for: the best FOUR answers from Section A and the best THREE answers from Section B. Questions in Section B carry TWICE as many marks as those in Section A.

Revision:

SECTION A

- 1. (a) Give the definition of a vertex of a regular plane curve. Find the vertices of the curve $\alpha(u) = (u, \cos u), u \in \mathbb{R}$.
 - (b) State the 4-vertex theorem. For each assumption of the theorem explain what does it mean. Is there a curve satisfying all conditions of the 4-vertex theorem and having more than 4 vertices? Justify your answer.
- 2. Let $\alpha(u) = (u^3 + u^2 + 3, u^2 u + 1, u^2 + u + 1), u \in \mathbb{R}$ be a curve in \mathbb{R}^3 .
 - (a) Show that $\boldsymbol{\alpha}$ is a regular curve.
 - (b) Find the torsion τ of $\boldsymbol{\alpha}$ and determine whether the trace of $\boldsymbol{\alpha}$ is contained in a plane in \mathbb{R}^3 .
- 3. (a) Give the definition of a regular surface in \mathbb{R}^3 .
 - (b) Show that the following sets are regular surfaces. State explicitly all statements you use in your proofs.
 - (i) $S_1 = \{(x, y, z) \in \mathbb{R}^3 \mid 3x^2 + 2y^2 z^2 = 5\}.$
 - (ii) $S_2 \subset \mathbb{R}^3$ given by $\boldsymbol{x}(r, \varphi) = (r \cos \varphi, r \sin \varphi, r^3)$, where $r > 0, 0 \le \varphi < 2\pi$.
- 4. Let S be the surface parametrised by $\boldsymbol{x}(u, v) = (u, v, u^3 + v^3)$.
 - (a) Find the coefficients of the first and second fundamental forms.
 - (b) Compute the Gauss curvature of S. Find the hyperbolic, flat and elliptic regions on S.
- 5. (a) Give the definition of an asymptotic curve on a surface. State the equivalent condition in terms of the second fundamental form.
 - (b) Find all asymptotic curves on the surface $x^2 + y^2 = z$.
- 6. Consider the surface S parametrised by $\boldsymbol{x}(u, v) = (u, v, u^2)$.
 - (a) Give the definition of a geodesic on a surface. Is the curve $\alpha(w) = (w, 0, w^2)$ geodesic on S? Justify your answer.
 - (b) Find at least one geodesic on S. Justify your answer.

SECTION B

- 7. A curve is called a *generalised helix* if its tangent makes a constant angle with a fixed line l in space. Such a line l is called an *axis* of the helix.
 - (a) Let $\boldsymbol{\alpha}(u) = (e^u \cos u, e^u \sin u, e^u), u \in \mathbb{R}$. Find curvature and torsion of $\boldsymbol{\alpha}$.
 - (b) Show that the curve α defined in part (a) is a generalised helix. Find its axis.
 - (c) Can a generalised helix have two non-parallel axes? Justify your answer.
 - (d) Let $f(s) : \mathbb{R} \to (0, \infty)$ be a smooth positive function. Show that there exists an arc length parametrised generalised helix $\beta(s)$ with curvature $\kappa(s) = f(s)$.
- 8. Define the first fundamental form on the upper half-plane $U = \{(u, v) \in \mathbb{R}^2 \mid v > 0\}$ by

$$E(u,v) := \frac{1}{v^2}, \qquad F(u,v) := 0, \qquad G(u,v) := \frac{1}{v^2}.$$

- (a) Consider the curve $\boldsymbol{\alpha}_{v_0}(t) \subset U$ given by $\boldsymbol{\alpha}_{v_0}(t) = (t, v_0)$ where $t \in (0, 1)$ and $v_0 > 0$ is a constant. Find the arc length $l(\boldsymbol{\alpha}_{v_0})$ of the curve $\boldsymbol{\alpha}_{v_0}(t)$. Find the limit of $l(\boldsymbol{\alpha}_{v_0})$ as $v_0 \to \infty$.
- (b) Consider the curve $\boldsymbol{\beta}(t) = (\frac{1}{2}, t) \subset U, t > 0$. Find the angle between $\boldsymbol{\alpha}_{v_0}$ and $\boldsymbol{\beta}$ at $\boldsymbol{p} \in U$, where $\boldsymbol{p} = \boldsymbol{\beta} \cap \boldsymbol{\alpha}_{v_0}$ is the intersection point of $\boldsymbol{\beta}$ and the curve $\boldsymbol{\alpha}_{v_0}$ defined in part (a).
- (c) Find the area of the domain $R_{u_0,v_0} = \{(u,v) \mid 0 < u < u_0, 0 < v_0 < v\} \subset U$.
- (d) Is the area of the domain $T = \{(u, v) \mid 0 < u < v < 1\} \subset U$ finite or infinite? *Hint:* Try to answer without any computations.
- 9. Let S be the surface given by the equation $x^2 + y^2 = z^2$, z > 0.
 - (a) Show that $\boldsymbol{x}(r,\theta) = (r\cos\theta, r\sin\theta, r)$, where $r \in (0, +\infty)$, $\theta \in (-\pi, \pi)$ is a local parametrisation of S at the point $\boldsymbol{p} = (1, 0, 1)$.
 - (b) Construct a local isometry at the point $\boldsymbol{p} = (1,0,1) \in S$ from S to a flat domain on the plane. You may use any parametrisation of S.
 - (c) Find the geodesic on S passing through the point $\mathbf{p} = (1, 0, 1)$ and having the tangent vector (0, 1, 0) at \mathbf{p} .
- 10. The regular surface $S \subset \mathbb{R}^3$ is given by

$$S = \{ (x, y, z) \in \mathbb{R} \mid x^2 + y^2 - z^{2/3} = 0, \ 1 < z < 8 \}.$$

- (a) Find the value of the integral $\int_S K dA$.
- (b) State the global Gauss-Bonnet Theorem explaining all notions which you use.
- (c) Find the Euler characteristic of S.
- (d) Verify the global Gauss-Bonnet Theorem directly for the surface S.