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SECTION A

1. Consider the random vector

X =

(
X1

X2

)
∼ N2

((
0
3

)
,

(
4 2
2 2

))
.

(a) Give the probability density function of X. Simplify the expression where
possible.

(b) Find the distributions of X1, X2, and X1 +X2.

(c) Below you find four data sets (A), (B), (C), and (D), each of size n = 200. All
of them are generated from a bivariate normal random vector, but only one of
them is generated from X. Which one is it? Explain your answer.
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2. (a) Let X = (X1, . . . , Xq)
T be a q–dimensional random vector with density f . We

know that the expectation m=E(X) is defined through the q–dimensional in-
tegral

m =

∫
xf(x) dx

where x = (x1, . . . , xq)
T and m = (m1, . . . ,mq)

T .

Show that mj =
∫
xjf(xj)dxj, where f(xj) is the marginal density of variable

Xj, j = 1, . . . , q.

(b) Consider the bivariate random vector X =

(
X1

X2

)
with density

f(x1, x2) =

{
2, 0 < x2 < x1 < 1
0, otherwise.

Find m and Σ=Var(X) through explicit calculation. Verify that your result for
Σ is a valid variance matrix.

3. The normal equations for the linear model can be written in our usual notation as

XTXβ̂ = XTY , (1)

where X ∈ Rn×p, Y ∈ Rn×1, β̂ ∈ Rp×1. Consider now the special case of the simple
linear regression model, that is

yi = a+ bxi + εi, i = 1, . . . , n.

(a) Write down the matrices Y , X, β for this scenario.

(b) Using (1), or otherwise, derive explicit expressions for the least squares regres-
sion estimators â and b̂.

(c) Assume n ≥ p. We are interested in identifying scenarios under which the
matrix XTX might not be invertible. Therefore, work out the determinant
of XTX for the considered simple linear regression model. Discuss for which
choices of xi, i = 1, . . . n, this determinant would (or could) take the value 0.
Give an interpretation of your results.

(d) Assume now n < p. Is there any choice of predictors xi, i = 1, . . . n, for which
XTX is invertible?
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4. An experiment was carried out to understand the strength of wool as a function of
three factors relating to its production. Specifically, we investigate the relationship
between the number of cycles to failure y of a worsted yarn and the factors: the
length of test specimen (x1 : 250, 300, 350 mm), amplitude of loading cycle (x2 :
8, 9, 10 mm), and load (x3 : 40, 45, 50 gm). Each of the 3×3×3 factor combinations
was used only once.

In what follows, we will use the logarithm of failure, that is log y, as response
variable. Concerning the specification of the predictor terms, there are two possible
views on the data:

(A) This is a designed factorial experiment involving three factors with three levels
each; so we can build a model involving an intercept and two dummy variables
for each factor level.

(B) Noting that the possible values for each factor are actually numeric and equidis-
tant, we can deal with them as if they were continuous variables, and build a
model of type

E(log y|x1, x2, x3) = β0 + β1x1 + β2x2 + β3x3.

(a) Write down the dimension of the design matrix for each of scenarios (A) and
(B).

(b) Fitting the models leads to values of R2 of 0.7692 for model (A) and 0.7291 for
model (B). Interpret these values briefly.

In order to allow better comparability for models involving a different number
of parameters, it has been suggested to consider adjusted R2, which is defined
by

R2
adj = 1− n− 1

n− p
(1−R2)

with n being the sample size and p denoting the number of parameters in the
respective model. Compute R2

adj for both models and interpret the result.

(c) State how R2
adj behaves when R2 −→ 1, and discuss the relevance of this result

with view towards using R2
adj as a model selection tool.

(d) State the three main principles of experimental design and explain their pur-
pose in the context of this data set. Do you detect any violations of these
principles?
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SECTION B

5. There is considerable interest in modelling (and predicting) water supply from pre-
cipitation. For this study, precipitation measurements (in inches per annum) were
taken at six sites in the Owens Valley in Southern California between 1948 and 1990.
Water supply is represented by ‘stream runoff volume’ (hereafter coded RunoffVol),
measured in acre–feet at a site near Bishop, California. Four of the six sites were
situated at lakes (MammothLake, SabrinaLake, SouthLake, UnnamedLake), and two
at creeks (BigpineCreek, RockCreek). A linear regression model was fitted with
RunoffVol as response variable, and the measurements at the six sites (plus an
intercept) as predictors.

The first two columns of a sequential Analysis of Variance table, where the predictors
are included into the model in the order as given above, are provided below. For
better readability, the SS values have been divided by 106. That is, for example,
the actual contribution of SabrinaLake to the Sum of Squares (SS) is 17,427,400.

Df SS/106

MammothLake 1 1556.6948
SabrinaLake 1 17.4274
SouthLake 1 661.2574
UnnamedLake 1 22549.8347
BigpineCreek 1 0.0789
RockCreek 1 509.8944
Error 36 2055.8307

(a) At the 5% level of significance, carry out adequate F–tests which address the
following questions:

i. Do the six precipitation measurements, as a whole, contribute significantly
to the variation of stream runoff volume?

ii. Given the inclusion of MammothLake, do the measurements from SabrinaLake

contribute significantly to the variation of stream runoff volume?

iii. Given the inclusion of the four measurements at the lakes, do the two
measurements at the creeks contribute significantly to the variation of
stream runoff volume?

(b) Model selection criteria can be used to decide between different models involv-
ing different configurations (and numbers) of variables. A well–known model
selection criterion is Mallows’ CI , which is given by

CI =
RSSI
s2

+ 2pI − n

where s is the residual standard error of the ‘full’ model, I is the index set of
included variables, pI denotes the cardinality of this set, and RSSI the sum of
squares of a model fitted using only the variables corresponding to the index
set I.

[Question 5 continues on the next page]
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i. Show that Mallows’ CI can be expressed in the form aI + bIFD, where aI
and bI are constants which depend on I through pI , D is the index set of
variables not included in the model, and FD is the test statistic for testing
H0: ‘Given the inclusion of I, the variables in D do not contribute to the
variation in the response’.
Use this connection to the F–test to deduce which values of CI one can
expect for ‘good’ submodels (that is, submodels those for which the hy-
pothesis H0 is true).

ii. For the data set considered, compute CI for the ‘empty’ model (including
only the intercept), the ‘full’ model (including measurements at all six
sites), and the model involving only the measurements taken at the lakes
(of course, both latter models also include the intercept). Select a suitable
model from these three options.

iii. Discuss briefly strategies to efficiently select a best submodel from all pos-
sible submodels of the full model.
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6. We consider a data set recorded in 1971 in Canada. The data set has n = 102 rows,
each of which gives an observation that relates to an occupation. Specifically, we
have measurements on the the following four variables:

income Average income of incumbents, dollars, in 1971.
education Average education of incumbents, years, in 1971.
women Percentage of incumbents who are women.
prestige Pineo-Porter prestige score for occupation,

from a social survey conducted in the mid-1960s.

For instance, the rows i = 1, 2 and 53 of this data set are displayed below.

i income education women prestige

1 gov.administrators 12351 13.11 11.16 68.8
2 general.managers 25879 12.26 4.02 69.1
53 newsboys 918 9.62 7.00 14.8

We are fitting initially a linear model to this data set,

income = β1 + β2education + β3women + β4prestige + ε (2)

(a) The two top panels of the figure provided on the next page contain some
diagnostics for this model. Specifically, the top left plot contains the leverage
values, hi, and the top right plot the (‘internally’) studentised residuals, ri,
which are defined as

hi = xTi (XTX)−1xi, ri =
ε̂i

s
√

1− hi
,

respectively, where X = (xT1 , . . . ,x
T
n )T denotes the design matrix and s the

residual standard error.

i. Explain qualitatively for which aspects (of the model and/or the data) hi
and ri serve as diagnostic tools.

ii. For both diagnostics, provide some statistical arguments which indicate
which magnitude of values of hi and ri one would typically expect. Based
on these, suggest rules of thumb which guide the data analyst when ap-
plying hi and ri as diagnostic devices.

iii. Now, using the information provided in the two images, as well as your
rules of thumb, carry out the diagnostics for the provided data set, and
report your conclusions.

(b) If violations of model assumptions are diagnosed, a frequently applied solution
is to transform the data adequately. One such transformation is the Box–Cox–
transformation,

y(λ) =

{
yλ−1
λ

λ 6= 0;

log y λ = 0,

which attempts to find the parameter, λ, such that y(λ) fulfils the linear model
assumptions,

y(λ)|x ∼ N(xTβ, σ2). (3)

[Question 6 continues on the next page]
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i. Find the density of the response variable, f(y|x), given the distributional
assumption (3). Hence, find the log–likelihood L(β, σ2, λ) of (independent)
observations y1, . . . , yn.

ii. Without providing further calculations, explain the strategy which is used
to arrive from here at the profile–log–likelihood Lp(λ).

iii. Consider the bottom left panel of the provided figure, which shows, for
model (2), a graph of Lp(λ) versus λ, peaking at some value λ̂ with a

log–likelihood of Lp(λ̂) = −108.0. The plot also contains a 95% confidence
interval for the true value of λ, which is of the type {λ|Lp(λ) > c}. Give
the exact numerical value of c. Discuss whether this plot gives evidence to
transform the response.

iv. The bottom right panel shows the studentised residuals after applying a
log–transformation onto the response. Discuss whether this specific trans-
formation is consistent with the result from the Box–Cox analysis, and
whether this residual plot suggests that the transformation has worked
well. Explain in words how the corresponding plot for the leverage values
would look after this response transformation.
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7. We consider a q–variate random vector X = (X1, . . . , Xq)
T ∼ (0,Σ), where q ≥ 2,

and 0 denotes a vector of dimension q containing only zeros. Denote as usual
by λ1 > ... > λq the q ordered eigenvalues of Σ, and by γj = (γj1 . . . , γjq)

T the
corresponding j–th eigenvector, j = 1, . . . , q. Denote further

Λr =

 λ1

. . .

λr


a diagonal matrix containing the first r ordered eigenvalues of Σ, and by Γr a q× r
matrix which has the corresponding eigenvector γj in its j−th column, j = 1, . . . , r.

We are interested in approximating X by the best fitting bivariate linear subspace.
We know that the solution to this problem is the plane through 0 spanned by the
vectors γ1 and γ2, with coordinates on this plane given by the principal component
scores γT1X and γT2X. We can combine these to form a bivariate random vector
T = ΓT

2X.

(a) The random vector T can be written as

T = v1X1 + . . .+ vqXq,

with appropriate vectors v1, . . . ,vq ∈ R2. Give expressions for the vj, j =
1, . . . , q.

(b) Show ΣΓ2 = Γ2Λ2.

(c) Derive E(T ) and Var(T ).

(d) The bivariate coordinates T can be decompressed into the original (q–variate)
data space via the operation X ′ = Γ2T .

i. Derive E(X ′) and Var(X ′).

ii. Show that, if q = 2, then X ′ = X.

(e) The following ‘scree plot’ was obtained through a principal component analysis
of a data set of dimension q = 60, where each of the 60 variables measure the
energy of sonar signals within a certain frequency band, after these signals
bounced off from metallic objects or rocks. (The sonar signals were originally
given on a scale from 0 to 1, but were mean–centered for this analysis in order
to comply with the framework of this question).

i. Explain what we see in this plot, referring to the notation outlined above.

ii. Would you deem it adequate to approximate this data set by a plane?
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