

EXAMINATION PAPER

Examination Session: May

2018

Year:

Exam Code:

MATH3231-WE01

Title:

Solitons III

Time Allowed:	3 hours			
Additional Material provided:	None			
Materials Permitted:	None			
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.		
Visiting Students may use dictionaries: No				

Instructions to Candidates:	Credit will be given for: the best FOUR answers from Section and the best THREE answers from S Questions in Section B carry TWICE in Section A.	n A ection B. as many ma	arks as those
		Dovision	

Revision:

SECTION A

1. Compute the dispersion relation for the equation

$$u_t + u_x - au_{xx} - bu_{xxx} = 0$$

where a and b are real constants.

- (a) For which values of a and b is there dissipation? And for which of these values is the dissipation physical? (Recall that a wave has physical dissipation if the amplitude of the wave decreases with time.)
- (b) For a = 0, compute the phase and group velocities c(k) and $c_g(k)$, and discuss for which values of b there is dispersion.
- 2. Construct a travelling wave solution with velocity v > 0 of the equation

$$u_t + (n+1)(n+2)u^n u_x + u_{xxx} = 0$$
,

subject to the boundary conditions $u, u_x, u_{xx} \to 0$ as $x \to \pm \infty$, where n is a positive integer. You can assume that $0 < u \leq (v/2)^{1/n}$ and use the indefinite integral

$$\int \frac{dx}{x\sqrt{1-x}} = -2\operatorname{arctanh}(\sqrt{1-x}) + \operatorname{constant}$$

without proof.

3. (a) Given an equation of motion and boundary conditions for the field u(x,t), state conditions under which a charge

$$Q = \int_{-\infty}^{+\infty} dx \ \rho(u, u_t, u_x, \dots)$$

is conserved.

(b) Show that for the equation

$$u_t + 12u^2u_x + u_{xxx} = 0$$

with boundary conditions $u, u_x, u_{xx} \to 0$ as $x \to \pm \infty$, the charge densities $\rho_1 = u$ and $\rho_2 = u^2$ satisfy the conditions stated in part (a) and therefore lead to two conserved charges $Q_i = \int_{-\infty}^{+\infty} dx \ \rho_i$, with i = 1, 2.

4. The equation $-d^2\psi/dx^2 + V(x)\psi = -\lambda\psi$ has a solution of the form

$$\psi(x) = e^{ikx}(ik - \tanh(x)) ,$$

where $\lambda = -k^2$.

- (a) Find V(x). [Hint: substitute the solution $\psi(x)$ into the equation.]
- (b) By considering the asymptotic behaviour of tanh(x) and by normalising ψ appropriately, find the reflection and transmission coefficients for this solution.
- (c) For what value(s) of λ is there a bound state solution?
- 5. (a) Define the Hirota differential operator $D_t^m D_x^n(f,g)$ acting on a pair of functions f and g. Compute $D_x^4(f,g)$, and show that

$$D_x^4(f,f) = 2(ff_{xxxx} - 4f_xf_{xxx} + 3f_{xx}^2).$$

(b) In the ball and box model, space is replaced by an infinite line of boxes, indexed by an integer $k \in \mathbb{Z}$. At time t = 0 there are balls in boxes 1, 2, 3, 7 and 8, and all the other boxes are empty. Evolve this configuration to t = 1 and 2 using the ball and box rule, and determine the phase shift of the length-3 soliton.

6. There is no question 6 on this paper.

SECTION B

7. A field u(x,t) has energy given by

$$E[u] = \frac{1}{2} \int_{-\infty}^{+\infty} dx \left[u_t^2 + u_x^2 + W(u)^2 \right] ,$$

where W(u) is a real function of u.

- (a) Which boundary conditions on u, u_x and u_t should be satisfied as $x \to \pm \infty$ in order for the field u to have finite energy?
- (b) The function W(u) is such that $W(u_{-}) = W(u_{+}) = 0$ and W(u) > 0 for $u_{-} < u < u_{+}$. If the field u(x,t) is smooth and satisfies finite energy boundary conditions with $u \to u_{\pm}$ as $x \to \pm \infty$, prove the Bogomol'nyi bound $E[u] \ge K$, where K is a positive constant which you should relate to W(u). Which equations should the field u satisfy if it saturates the bound?
- (c) Compute K and find the most general solution that saturates the Bogomol'nyi bound if $W(u) = \cos^2(u)$ with $u_{\pm} = \pm \frac{\pi}{2}$. Check explicitly that the boundary conditions are satisfied.
- 8. Consider the pair of equations

$$v_x = -\frac{1}{2}uv$$
, $v_t = \frac{1}{4}(u^2 - 2u_x)v$.

- (a) Show that these relations give a Bäcklund transform between Burgers' equation $u_t + uu_x u_{xx} = 0$ for u and the heat equation $v_t = v_{xx}$ for v.
- (b) u(x,t) = 2c is a solution of Burgers' equation, where c is a constant. Apply the Bäcklund transform to find the corresponding solution of the heat equation.
- (c) A special solution of the heat equation for t > 0, which can be obtained by time evolution of a Dirac delta function at t = 0, is

$$v(x,t) = \frac{1}{\sqrt{4\pi t}} \exp(-x^2/(4t))$$
.

[You do not need to check these statements.] Apply the Bäcklund transform to find the corresponding solution of Burgers' equation. Is this solution of Burgers' equation regular or singular?

- 9. (a) If f = f(x,t), $D := \partial/\partial x$, and P, Q, R are any (differential) operators, show that:
 - (i) $[D,f] = f_x,$
 - (ii) $[D^2, f] = f_{xx} + 2f_x D$,
 - (iii) $[D^3, f] = f_{xxx} + 3f_{xx}D + 3f_xD^2,$
 - (iv) [P, QR] = [P, Q]R + Q[P, R].
 - (b) Let L, M be the differential operators $L = D^2 + u(x, t)$, and $M = -4D^3 + \beta(x, t)D + \gamma(x, t)$. Compute the commutator [L, M], writing it in a form where the differential operators D^n are all on the right.
 - (c) What property must the commutator [L, M] possess in order for L, M to form a Lax pair? Use this property to find $\beta(x, t)$ and $\gamma(x, t)$ in terms of two unknown functions of t only.
 - (d) Solve these equations and show that the Lax equation, $L_t + [L, M] = 0$, implies the KdV equation $u_t + 6uu_x + u_{xxx} = 0$ for a particular choice of one of the unknown functions of t.
 - (e) Indicate how one can generalise this method to obtain higher order non-linear partial differential equations for u which are solvable via the inverse scattering method.
- 10. (a) If F[u] is the functional $F[u] = \int_{-\infty}^{+\infty} dx \ f(u, u_x, u_{xx}, \dots)$, define the functional derivative $\delta F[u]/\delta u$, and derive an expression for this derivative in terms of $\partial f/\partial u, \ \partial f/\partial u_x, \ \partial f/\partial u_{xx}$ etc. (The function u satisfies the boundary conditions $u \to 0, \ u_x \to 0, \ u_{xx} \to 0$, etc as $x \to \pm \infty$.)
 - (b) Take $f(u, u_x, ...) = au_x^2 + bu^3$, for a, b constants, and write out the differential equation

$$u_t = \frac{\partial}{\partial x} \left(\frac{\delta F[u]}{\delta u} \right)$$

Find the values of the constants a, b for which this becomes the KdV equation $u_t + 6uu_x + u_{xxx} = 0.$

(c) Now take $f(u, u_x, ...) = \alpha u^4 + \beta u u_x^2 + \gamma u_{xx}^2$, for α, β, γ constants, and write out the differential equation

$$u_t = \frac{\partial}{\partial x} \left(\frac{\delta F[u]}{\delta u} \right).$$

Find the values of the constants α , β , γ for which this becomes the KdV₅ equation $u_t + 30u^2u_x + 20u_xu_{xx} + 10uu_{xxx} + u_{xxxxx} = 0$.

(d) Explain the significance of the results in parts (b) and (c).