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SECTION A

1. Consider a single qubit Hilbert space with states represented by column vectors.
Two operators are represented by matrices

A =

(
1 0
0 0

)
, B =

(
0 i
−i 0

)
.

(a) Briefly explain why A and B are observables but show that they cannot be
measured simultaneously.

(b) What are the possible values, and the corresponding probabilities, of a mea-

surement of A on the state 1√
5

(
2
1

)
?

(c) Suppose the measurement of A gave the highest possible value. What are
the possible outcomes and probabilities if A is measured again, or if instead
B is measured? Finally, what happens if A is then measured assuming the
measurement of B gave the lowest possible value?

2. Consider a two-qubit system in a state

|Ψ〉 = cos θ |00〉+ eiφ sin θ |11〉

for some real constants θ and φ.

(a) Calculate the density operator ρ̂.

(b) If the system is a bipartite system (consisting of two one-qubit subsystems)
calculate the reduced density operator ρ̂A in one subsystem.

(c) Calculate Tr(ρ̂2
A) and comment on its interpretation. State (without proof)

what can happen to Tr(ρ̂2
A) under local operations in either subsystem.

3. The density matrix ρ for a single qubit can be described in terms of the Bloch sphere
as

ρ =
1

2
(I + r · σ)

where the Bloch vector r is a position vector in three dimensions, I is the identity
matrix and

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
, σ3 =

(
1 0
0 −1

)
.

(a) What are the allowed values of r = |r| and how are pure states distinguished
from mixed states in the Bloch sphere picture?

(b) Suppose the system has Hamiltonian H = ασ3 for some constant α. Calculate
the density matrix at time t > 0 in terms of the density matrix at time t = 0
and state the geometric interpretation (in the Bloch sphere picture) of this
time-evolution.
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4. Consider a classical binary function f(x), so f(x) is either 0 or 1 for each input x.

(a) Describe the circuit model, where f(x) is constructed in terms of a set of
elementary operations.

(b) Take the input x to have n bits. Determine the number of distinct functions
f(x).

(c) In reversible computation, we take the elementary operations to be NOT,
controlled-not (CNOT), and controlled-controlled not (CCNOT). Give the
number of possible circuits you can construct acting on n bits with m of these
operations.

(d) Hence argue that we will need circuits with exponentially many (in n) opera-
tions to construct all the functions f(x) of an n bit input.

5. Consider a two-qubit system consisting of qubits q1, q0. We act on it with a unitary
operation constructed by first acting with NOT on q1, then the Hadamard H =

1√
2

(
1 1
1 −1

)
on q0, then a controlled-not with control bit q1 and target bit q0, and

finally another Hadamard on q0.

(a) Draw the corresponding quantum circuit.

(b) Determine the action on computational basis states.

(c) Hence give the matrix representation of this unitary operation.

6. We wish to devise a quantum error correcting code to encode a single logical qubit
in n physical qubits so as to protect from single bit flip errors. Explain why we need
n + 1 orthogonal two-dimensional subspaces in the physical Hilbert space. Hence
show the minimum possible number of physical qubits is 3. Similarly determine
the minimum possible number of physical qubits to enable recovery from arbitrary
single qubit errors.
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SECTION B

7. (a) Suppose a system has 4 measurable quantities, Q, R, S and T . Briefly state
what local realism says about measurement of one or more of these quantities.

(b) Assuming local realism, and that a measurement of any one of Q, R, S and T
gives a value either +1 or −1, what are the possible values of a measurement
of (QS + RS + QT − RT )? Hence derive the best possible upper and lower
bounds on the average value of (QS+RS+QT−RT ) if measured for a number
of such systems (each of which may be in any allowed state.)

(c) Now consider a two-qubit quantum system and represent the states as 4-
component column vectors with

|0〉⊗|0〉 →


1
0
0
0

 , |0〉⊗|1〉 →


0
1
0
0

 , |1〉⊗|0〉 →


0
0
1
0

 , |1〉⊗|1〉 →


0
0
0
1

 .

Also define

Q = σ1 ⊗ I , R = σ3 ⊗ I , S =
−1√

2
I ⊗ (σ1 + σ3) , T =

−1√
2
I ⊗ (σ1 − σ3).

State which pairs of these observables cannot be simultaneously measured.

Write down the 4× 4 matrix representation of Q, R, S and T , noting that

I =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
.

(d) Now calculate the expectation values 〈QS〉, 〈RS〉, 〈QT 〉 and 〈RT 〉 in the state

|β00〉 =
1√
2

( |0〉 ⊗ |0〉+ |1〉 ⊗ |1〉 ).
(e) Describe how your results above can be used in a bipartite system to demon-

strate that the postulates of local realism are not satisfied. In particular, state
which measurements should be performed and state why it is important to
consider two separated subsystems.
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8. (a) State the no-cloning theorem in quantum mechanics.

(b) Suppose there is some process in quantum mechanics which clones two specific
states |φ〉 and |ψ〉 in the sense that for some fixed state |Ω〉 the process maps
(with probability 1)

|φ〉 ⊗ |Ω〉 → |φ〉 ⊗ |φ〉
|ψ〉 ⊗ |Ω〉 → |ψ〉 ⊗ |ψ〉

Using the assumption of linearity, show that this process cannot clone a generic
state.

(c) Briefly describe a method that clones a state provided it is one of two known
orthogonal states |φ〉 and |ψ〉.

(d) Now suppose that Alice has a qubit in an unknown state |ψ〉 = a |0〉+b |1〉. She
also shares a Bell state with Bob so that the full bipartite system is initially
in the state

|Ψ〉 =
1√
2
|ψ〉 ⊗

(
|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉

)
.

Calculate the state of the system after Alice performs a unitary transformation
on the first 2 qubits which leaves |0〉 ⊗ |0〉 and |0〉 ⊗ |1〉 unchanged while
exchanging |1〉 ⊗ |0〉 ↔ |1〉 ⊗ |1〉, and then performs a unitary transformation
on the first qubit only, mapping

|0〉 → 1√
2

(
|0〉+ |1〉

)
and |1〉 → 1√

2

(
|0〉 − |1〉

)
.

(e) Alice now measures both her qubits using the observable |1〉 〈1|. What is the
probability that Bob now has the state |ψ〉? Suppose that Alice got result 0
for both measurements. Describe explicitly what Alice and Bob must do using
LOCC only to ensure that Bob has the state |ψ〉.

(f) Why is the above process consistent with the no-cloning theorem?

Comment on whether Alice and Bob could use this process to communicate
by Alice choosing the state |ψ〉. In particular, does the use of entanglement
in this process allow for more efficient classical communication, or are there
advantages in terms of secrecy assuming the classical communications are not
secure.
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9. Consider the Quantum Fourier Transform, defined as the unitary operator UFT on
an n qubit Hilbert space whose action on basis states |x〉, x = 0, . . . 2n − 1 is

UFT |x〉 =
1

2n/2

2n−1∑
y=0

e2πixy/2
n|y〉.

Consider the case n = 2.

(a) Evaluate the action of UFT on the computational basis.

(b) Show that this is reproduced by the circuit

|q1〉 H S ×
|q0〉 • H ×

where H = 1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, and the last operation swaps the

two qubits.

(c) Phase estimation: Suppose we have a unitary U , which we know is either

the identity, S, or Z =

(
1 0
0 −1

)
, and we want to determine which. Show

that the circuit

|q1〉 = |0〉 H •
U †

FT|q0〉 = |0〉 H •
|t〉 = |1〉 U U2

will allow us to determine the value of U by measuring the output values of
q1, q0 in the computational basis.

10. (a) Show that the operator
Rχ = I − 2|χ〉〈χ|,

where I is the identity, generates a reflection in the plane orthogonal to the
vector |χ〉 in the Hilbert space. Show that this is a unitary operator for any
vector |χ〉.

(b) Suppose that we have Rχ, and we want to determine |χ〉. Starting with a trial
vector |ψ〉 whose overlap with |χ〉 is small, show how we can obtain a vector
with larger overlap with |χ〉, by acting with Rχ and −Rψ.

How large would the initial overlap have to be for this operation not to improve
it?

(c) Suppose we obtain a quantum system in the state |χ〉. Does this operation
allow us to determine the state?

(d) Suppose we know the state |χ〉 is one of the computational basis states. Give
a suitable choice of trial vector |ψ〉, and determine the number of applications
of Rχ and −Rψ required to bring the state of the system as close as possible
to |χ〉.
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