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SECTION A

1. (a) Let x1:n = (x1, ..., xn) be an exchangeable sequence of observables, θ ∈ Θ be
the unknown parameter with prior distribution π(θ), and posterior distribu-
tion π(θ|x1:n), where Θ is a countable parametric space. Suppose θ∗ ∈ Θ
is the only true value of θ, with π(θ∗) > 0, and −KL(f(·|θ∗), f(·|θ)) :=∫

log f(x|θ)
f(x|θ∗)

f(dx|θ∗) < 0 for all θ 6= θ∗. Prove that

lim
n→∞

π(θ|x1:n) =

{
1 , θ = θ∗

0 , θ 6= θ∗

(b) Give an interpretation of the above result.

2. Consider the Bayesian model (f(x1:n|θ), π(dθ)), where x1:n = (x1, ..., xn) is an ex-
changeable sequence of observables, and θ ∈ Θ is the uncertain parameter.

(a) Give a definition of the Bayesian point estimator δπ of θ under the loss function
`(θ, δ).

(b) Let `(θ, δ) = w(θ)(θ− δ)2 be the weighted quadratic loss function, where w(θ)
is a non-negative function, and θ ∈ Θ ⊂ R. Prove that the Bayes estimator
δπ(x1:n) under the weighted quadratic loss function is

δπ(x1:n) =
Eπ(w(θ)θ|x1:n)

Eπ(w(θ)|x1:n)
(1)

(c) Derive w(θ) for θ ∈ Θ ⊂ R, such that the mean squared error of the Bayesian
estimator δπ in (1) is minimised. Justify your answer.

(d) State the duality principle that the Bayes estimator (1) exhibits. Justify your
answer.

3. (a) Describe how the ‘Frequentist’, the ‘Subjective Bayesian’, and the ‘Objective
Bayesian’ schools of statistics interpret probability.

(b) Recall the Representation theorem for 0− 1 random quantities.

Theorem: If x1, x2, ... is an infinitely exchangeable sequence of 0 − 1 ran-
dom quantities with probability measure P , there exists a distribu-
tion function Π such that the joint mass function p(x1, ..., xn) for
x1, ..., xn has the form

p(x1, ..., xn) =

∫ 1

0

n∏
i=1

θxi(1− θ)1−xidΠ(θ)

i. Present the quantities Π(θ) and θ with respect to {xi}i≥1. (You are not
required to prove the theorem.)

ii. From the Subjective probability perspective, provide an interpretation of
the aforesaid theorem regarding: the generation of the sequence of random
variables x1, ..., xn; the quantity Π(θ); and the quantity θ.
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4. Laplace’s method gives an approximation to integrals of the form

I =

∫ ∞
−∞

exp{−E(x)}dx (2)

by the formula

I ≈ exp{−E(x̃)}

√
2π

E ′′(x̃)
(3)

where E(x) is a convex and two times differentiable function with a minimum at
x = x̃.

(a) Show how this approximation formula can be obtained.

(b) Derive the Laplace approximation for the normalization constant for the fol-
lowing non-normalized density

f(x) ∝ e−βxe−αe
−x

where x ∈ R, α > 0, and β > 0.

5. (a) Given n samples {xi}i∈[1..n] from a probability distribution on R with density g,
write down the formula for the importance sampling estimate of the expectation
Ef [m] of a function m : R→ R with respect to a distribution on R with density
f , using g as the importance function.

(b) What condition must g satisfy to be suitable for this approximation?

(c) Show that this is an unbiased estimator of the expectation.

(d) Assume we wish to compute E [|X|] for X from a t-distribution with 3 degrees
of freedom, X ∼ t3, using a Monte Carlo method. Consider the choices of
importance function g corresponding to the following distributions:

i. t3;

ii. t1, the t-distribution with 1 degree of freedom;

iii. N (0, 1), the standard Normal distribution.

For each of these choices, explain whether you would use it, and why.

6. There is no question 6 on this paper.

ED01/2018
University of Durham Copyright

CONTINUED



4 of 9
Page number

MATH4031-WE01
Exam code

SECTION B

7. (a) Consider the Bayesian model{
xi|θ

iid∼ f(d · |θ), ∀i = 1, ..., n

θ ∼ π(dθ)
(4)

with θ ∈ Θ and {xi ∈ X}ni=1, and consider a loss function `(θ, δ).

i. Give a definition of the term Frequentist risk (or average loss) R(θ, δ) of
the decision rule δ for parameter θ.

ii. Prove the following theorem: If a prior distribution π is strictly positive
on Θ, with finite Bayes risk and the risk function, R(θ, δ), is a continuous
function of θ for every δ, the Bayes estimator δπ is admissible.

(b) Consider the Bayesian model {
x|θ ∼ N(θ, 1)

θ ∼ N(0, 1)
(5)

where θ ∈ R, and consider that only one observation has been collected.

i. Show that the posterior distribution of θ is θ|x ∼ N(1
2
x, 1

2
) .

ii. Show that the Bayes point estimator under the loss function

`(θ, δ) = exp(
3

4
θ2)(θ − δ)2

is δπ(x) = 2x.

iii. Compute the Frequentist risk for decision rule δc(x) = cx, where c > 0.

iv. Show that the Bayes point estimator δπ(x) = 2x is inadmissible.

v. Examine and report what has caused the Bayes point estimator δπ(x) to
be inadmissible? Justify your answer.
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8. Consider a sequence of exchangeable observables x1:n = (x1, ..., xn), where xi ∈ Xk,
for i = 1, ..., n, and Xk = {x ∈ {0, 1}k|

∑k
j=1 xj = 1}. In words, xi is a k-dimensional

vector all of whose elements are equal to 0 except for one which is equal to 1, for
i = 1, ..., n. Consider the Bayesian model{

xi|θ
IID∼ Muk(θ)

θ ∼ π(d·)

where θ ∈ Θ, with Θ = {θ ∈ (0, 1)k|
∑k

j=1 θj = 1}. Here, Muk denotes the Multino-
mial probability distribution with PMF

Muk(x|θ) =

{∏k
j=1 θ

xj

j , if x ∈ Xk
0 , otherwise

(6)

(a) Show that the parametric model (6) is a member of the k − 1 exponential
family.

(b) Compute the likelihood f(x1:n|θ), and find the sufficient statistic tn := tn(x1:n).

(c) Derive the conjugate prior distribution for θ, and then show that it is a Dirichlet
distribution.

You may use the fact that the Dirichlet distribution Dik(dθ|a) with parameter
a = (a1, ..., ak), where {aj > 0; j = 1, ..., k} has PDF

Dik(θ|a) =


Γ(

Pk
j=1 aj)Qk

j=1 Γ(aj)

∏k
j=1 θ

aj−1
j , if θ ∈ Θ

0 , otherwise

(d) Compute the posterior distribution. State the name of the distribution, and ex-
press its parameters with respect to the observations and the hyper-parameters
of the prior. Justify your answer.

(e) Compute the probability mass function of the predictive distribution for a
future observation y = xn+1 in closed form.

Hint Γ(x) = (x− 1)Γ(x− 1).

(f) Suppose you are interested in checking if a k-sided die is fair or not. You collect
n observations {xi}ni=1, where xi ∈ Xk, according to the following experiment.
You throw the die n times; at the i-th throw, you record the result as xi,j = 1 if
the result is the j-th side and as xi,j = 0 if the result is otherwise for j = 1, ..., k.

i. Set up the hypothesis test, by stating explicitly the pair of hypotheses,
and computing the Bayes factor in closed form.

ii. Suppose that it is a 4-sided die, you throw it 6 times, and it comes up ‘1’,
4 times; ‘2’, 0 times; ‘3’, 1 time; and ‘4’, 1 time. Perform the Bayesian
test to check whether the dice is fair or not. State your decision based on
Jeffreys’ scale rule.
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9. (a) i. State the general algorithm for rejection sampling from a probability den-
sity function ρ(x) given only an unnormalized version ρ̃(x) and an envelope
function q̃(x) = kq(x), where q is another probability density function from
which we can easily sample.

ii. What assumption is being made about the relationship between ρ̃ and q̃?

(b) Consider a random quantity X having Weibull distribution We (2, 1) with prob-
ability density function (pdf)

f(x) = 2x exp
{
−x2

}
i. Show that f(x) is log-concave with respect to x.

ii. Consider the problem of sampling from We (2, 1) using rejection sampling
and using a proposal function based on two tangents to the logarithm of
the pdf where the tangents are at x = 4/5 and x = 3/2.
Derive the numerical algorithm for this sampling problem in order to pro-
duce two proposals of random draws from We (2, 1) and state whether such
proposals are accepted or not. Base your calculations on the availability of
the following sequence of uniformly distributed random numbers between
0 and 1:

0.279 0.624 0.118 0.441 0.132 0.910
0.923 0.538 0.586 0.258 0.400 0.111

iii. Calculate the acceptance rate of the algorithm considered in part (ii).

iv. Build the minimum curvature normal proposal for the pdf of We (2, 1) and
compute the acceptance rate for the corresponding acceptance/rejection
algorithm.
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10. (a) State and prove the Markov blanket theorem concerning dependence in a
Bayesian network, and explain the connection between the theorem and mor-
alization.

(b) The development of road accident statistics is being studied for M similarly
sized towns over the course of N years. Let Aij be the number of accidents in
year i and town j, and Sij the number of serious accidents in year i and town
j. Expert judgement is that for a given year, the variability between towns
in number of accidents should be modelled well by a Poisson distribution with
uncertain parameter λi, and the variation of the λi’s in turn by a Gamma
distribution with fixed parameters α and β. Sij, the number of serious accidents
in year i and town j, is assumed to be a fraction of all accidents Aij in the
respective year and town, with a long-term proportion θj specific for each town
but the same for all years. The proportions θj, j = 1, . . . ,M , are assumed to be
independent of the λi’s, and follow a Beta distribution with fixed parameters
a and b common to all towns.

i. Draw a directed acyclic graph for the Bayesian network describing the
joint distribution of the {Aij}, {Sij}, {λi} and {θj} based on the above,
and add vertices for the further parameters that are assumed to be fixed.
(Hint: use two intersecting plates.)

ii. Specify the distributions for the vertices {Aij}, {Sij}, {λi} and {θj} given
their respective parents.

iii. Derive (up to multiplicative constants) the conditional distributions for λi
and θj given that, in each case, all other variables have been observed.
(Note therefore that the conditioning variables are different for λi and for
θj.) Describe briefly how random samples could be obtained from these
distributions. You may refer to standard functions in R, or name standard
algorithms. For any algorithm you name, show that preconditions (if any)
for its application are met.

iv. On closer inspection, the experts are uneasy about the assumption of con-
ditional independence of the λi’s given α and β, and hypothesize a con-
sistent trend over time in expected number of accidents instead. Make
a suggestion on how the Bayesian network, i.e., the graph and the node
distributions, could be modified to account for this.

The Poisson distribution for x ∈ {0, 1, . . . } with parameter λ takes the form:

P [x|λ] = e−λ
λx

x!

The pdf of a Gamma-distributed random quantity x with parameters u and v
is:

f(x|u, v) =
vu

Γ(u)
xu−1e−vx

The pdf of a Beta-distributed random quantity x with parameters a and b is:

f(x|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1
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SECTION C

11. Consider a collection of paired data {(yi, xT
i ), i = 1, ..., n}, where each pair (yi, x

T
i )

is independently collected, yi ∈ R, xi = (xi,1, ..., xi,p)
T ∈ Rp p ≥ 1, and n ≥ 1.

Consider the Normal linear model

y = Xβ + ε, ε ∼ N(0, σ2)

where the vector of responses is y = (y1,...,yn)T ∈ Rn , the design matrix is X =
(x1, ..., xn)T ∈ Rn×p , and the uncertain parameters are β ∈ Rp and σ2 > 0.

(a) Compute the likelihood function f(y1:n|β, σ2). For simplicity, you may suppress
the conditioning on xi’s in the notation.

(b) Show that the parametric sufficient statistic is tn = (n,XTX,XTy) and justify
your answer.

Hint If you use the following identity, you should prove it.

(y −Xβ)T(y −Xβ) = (β − β̂)T(XTX)(β − β̂) + S

where β̂ = (XTX)−1XTy, and S = (y −Xβ̂)T(y −Xβ̂)

(c) Derive the prior distribution for (β, σ2) which is conjugate to this likelihood
function. Show that the prior distribution satisfies

π(dβ, dσ2) = N(dβ|m,σ2V ) IG(dσ2|a, d)

with V > 0, a > 0, d > 0.

Here, the PDF of (k-dimensional) Normal distribution is

N(x|µ,Σ) =
1

(2π)
k
2

√
det(Σ)

exp(−1

2
(x− µ)TΣ−1(x− µ)) , for x ∈ Rk

Here, the PDF of the inverse Gamma is

IG(x|a, d) =

 ( a
2

)
d
2

Γ( d
2

)
x−

d+2
2 exp(−a

2
1
x
) , if x ∈ (0,+∞)

0 , otherwise

(d) The posterior distribution of (β, σ2) is

π(dβ, dσ2|y1:n) = N(dβ|m∗, σ2V ∗) IG(dσ2|a∗, d∗)

with

m∗ = (V −1 +XTX)−1(V −1m+XTy) ; V ∗ = (V −1 +XTX)−1

a∗ = a+mTV −1m+ yTy −m∗,TV ∗,−1m ; d∗ = d+ n

Show that E(β|y1:n) = m∗ and that Var(β|y1:n) = V ∗ a∗

d∗−2
.
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(e) Compute the marginal posterior distribution of β, and recognize that it is a
multivariate Student-t distribution π(dβ|y1:n) = St(dβ|m∗, a∗V ∗, d∗).
Here, the PDF of (k-dimensional) Student-t distribution is

St(x|m,V, d) =
Γ(d+2

2
)

det(V )
1
2π

k
2 Γ(d

2
)

(1 + (x−m)TV −1(x−m))−
d+k
2 , for x ∈ Rk

(f) Construct the (1 − a)100% highest probability density credible set for β, and
show that it is

Ca = {β ∈ Rp | (β −m∗)T(V ∗)−1(β −m∗) ≤ pa∗

d∗
Fp,d+n,1−a}

where Fp,d+n,1−a is the upper 1 − a quantile of distribution F with degrees of
freedom p and d.

Hint-1 If x ∼ χ2
d1

and y ∼ χ2
d2

then z = x/d1
y/d2

with z ∼ Fd1,d2

Hint-2 y ∼ IG(a, b) if and only if z = ay−1 with z ∼ χ2
b
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