

EXAMINATION PAPER

Examination Session: May

2018

Year:

Exam Code:

MATH4041-WE01

Title:

Partial Differential Equations IV

Time Allowed:	3 hours	
Additional Material provided:	None	
Materials Permitted:	None	
Calculators Permitted:	Yes	Models Permitted: Casio fx-83 GTPLUS or Casio fx-85 GTPLUS.
Visiting Students may use diction	onaries: No	

Questions in Section B and C carry TWICE as many marks as those in Section A.	the best TWO answers from Section A, the best THREE answers from Section B, AND the answer to the question in Section C.
--	---

Revision:

SECTION A

1. Consider the conservation law

$$\begin{cases} u_t + uu_x = 0 & \text{for } (x,t) \in \mathbb{R} \times (0,T), \\ u(x,0) = e^{-(x-1)^2} & \text{for } x \in \mathbb{R}. \end{cases}$$
(1)

- (a) Find the largest value of $T \in \mathbb{R}$ for which this conservation law has a classical solution $u : \mathbb{R} \times [0, T) \to \mathbb{R}$.
- (b) Give a sketch of the characteristics of (1) up until time T.
- (c) Find an implicit equation for u that does not contain partial derivatives.
- 2. Consider the conservation law

$$\begin{cases} u_t + (f(u))_x = 0 & \text{for } (x,t) \in \mathbb{R} \times (0,\infty), \\ u(x,0) = g(x) & \text{for } x \in \mathbb{R}. \end{cases}$$
(2)

- (a) Define the Rankine-Hugoniot condition for a shock.
- (b) Define the Lax entropy condition for a shock.
- (c) Let

$$g(x) = \begin{cases} 1 & \text{for } x < 0, \\ 0 & \text{for } x > 0, \end{cases}$$
 and $f(u) = \frac{1}{4}u^4.$

Consider the functions

$$u_1(x,t) = \begin{cases} 1 & \text{for } x < t/2, \\ 0 & \text{for } x > t/2, \end{cases} \quad \text{and} \quad u_2(x,t) = \begin{cases} 1 & \text{for } x < t/4, \\ 0 & \text{for } x > t/4. \end{cases}$$

Which one of these two functions is a weak solution of (2)?

Is it also an admissible solution in the sense of the Lax entropy condition?

3. State the theorem of local existence for first-order quasilinear PDEs

$$\begin{cases} a_1(x, y, u)u_x + a_2(x, y, u)u_y = b(x, y, u) & \text{for } (x, y) \in \Omega, \\ u(x, y) = u_0(x, y) & \text{for } (x, y) \in \Gamma, \end{cases}$$

in the following steps:

- (a) State the assumptions on the Cauchy data Γ and u_0 .
- (b) State the assumptions on the coefficients a_1, a_2, b .
- (c) State what is means for the data to be noncharacteristic.
- (d) State the result of the theorem.

$$-\Delta u = g \quad \text{in } B_1(\mathbf{0}),$$

$$\nabla u \cdot \boldsymbol{n} = 1 + \alpha \quad \text{on } \partial B_1(\mathbf{0}),$$

Exam code

MATH4041-WE01

where

$$g(\boldsymbol{x}) = \begin{cases} \frac{1}{|\boldsymbol{x}|} \sin(2\pi |\boldsymbol{x}|) & \text{if } \boldsymbol{x} \neq \boldsymbol{0}, \\ 2\pi & \text{if } \boldsymbol{x} = \boldsymbol{0}, \end{cases}$$

and where \boldsymbol{n} is the outward-pointing unit normal vector field to $\partial B_1(\mathbf{0})$, and $\alpha \in \mathbb{R}$ is a constant. Find α .

- (b) State the Poincaré inequality for functions $f \in C^1([a, b])$.
- 5. (a) State the strong maximum principle for harmonic functions.
 - (b) Let $\Omega \subset \mathbb{R}^n$ be open, bounded and connected. Let $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfy

$$-\Delta u = f \quad \text{in } \Omega,$$
$$u = g \quad \text{on } \partial\Omega,$$

and let $v \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfy

$$-\Delta v = f \quad \text{in } \Omega,$$
$$v = h \quad \text{on } \partial\Omega,$$

where $f, g, h : \overline{\Omega} \to \mathbb{R}$. Assume that $g \leq h$ and that there exists $\boldsymbol{x}_0 \in \partial \Omega$ such that $g(\boldsymbol{x}_0) < h(\boldsymbol{x}_0)$. Show that u < v in Ω .

6. Let $\Omega \subset \mathbb{R}^2$ be open and bounded with smooth boundary. Let

$$V = \{ \varphi \in C^1(\overline{\Omega}) : \varphi = 0 \text{ on } \partial\Omega \}.$$

Define $E: V \to \mathbb{R}$ by

$$E[v] = \frac{1}{2} \int_{\Omega} \nabla v \cdot (A \nabla v) \, d\boldsymbol{x} - \int_{\Omega} f v \, d\boldsymbol{x}$$

where $f : \Omega \to \mathbb{R}$ is smooth and $A : \Omega \to \mathbb{R}^{2 \times 2}$ is a smooth, matrix-valued map such that $A(\boldsymbol{x})$ is symmetric for all $\boldsymbol{x} \in \Omega$. Assume that $u \in C^2(\overline{\Omega}) \cap V$ minimises E:

$$E[u] = \min_{v \in V} E[v]$$

Show that u satisfies the elliptic PDE

$$-\operatorname{div}(A\nabla u) = f$$
 in Ω .

SECTION B

7. Let $a \in \mathbb{R}$ be a constant. Consider the first order PDE

$$\begin{cases} au_x + xyu_y = xu, & (x, y) \in \mathbb{R}^2, \\ u(0, y) = f(y), & y \in \mathbb{R}, \end{cases}$$
(3)

where $f : \mathbb{R} \to \mathbb{R}$ is an arbitrary continuous function.

- (a) For which values of a is the initial condition in (3) noncharacteristic?
- (b) Using the method of characteristics, solve (3) for all values of a for which the initial condition is noncharacteristic.
- (c) Take f(y) = y, a = 0. Prove that (3) has infinitely many solutions.
- 8. Consider the scalar conservation law

$$\begin{cases} u_t + (f(u))_x = 0, \\ u(x, 0) = u_0(x), \end{cases}$$

where

$$u_0(x) = \begin{cases} 1 & \text{for } x < 0, \\ 3 & \text{for } x > 0, \end{cases}$$
 and $f(u) = \frac{1}{3}u^3.$

(a) Write down the equation for the characteristics inside the regions

$$\{x < t\} \qquad \text{and} \qquad \{x > 9t\}.$$

(b) Verify that the following are weak solutions:

$$u_1(x,t) = \begin{cases} 1 & \text{for } x < \frac{7}{3}t, \\ 2 & \text{for } \frac{7}{3}t < x < 4t, \\ \left(\frac{x}{t}\right)^{1/2} & \text{for } 4t < x < 9t, \\ 3 & \text{for } x > 9t, \end{cases} \qquad u_2(x,t) = \begin{cases} 1 & \text{for } x < t, \\ \left(\frac{x}{t}\right)^{1/2} & \text{for } t < x < 9t, \\ 3 & \text{for } x > 9t. \end{cases}$$

(c) Which of the solutions in part (b) satisfy the Lax entropy condition? Justify your answer.

9. Let $f \in C_c^2(\mathbb{R}^3)$ and let

$$\Phi(\boldsymbol{x}) = \frac{1}{4\pi |\boldsymbol{x}|}$$

be the fundamental solution of Poisson's equation in \mathbb{R}^3 .

(a) Show that for all $\boldsymbol{x} \in \mathbb{R}^3$

$$\lim_{\varepsilon \to 0} \int_{B_{\varepsilon}(\mathbf{0})} \Phi(\mathbf{y}) \Delta_{\mathbf{y}} f(\mathbf{x} - \mathbf{y}) \, d\mathbf{y} = 0.$$

Hint: You may use the following, which you do not need to prove:

$$\|\Phi\|_{L^1(B_{\varepsilon}(\mathbf{0}))} = \frac{1}{2}\varepsilon^2.$$

(b) Show that for all $\boldsymbol{x} \in \mathbb{R}^3$

$$\lim_{\varepsilon \to 0} \int_{\partial B_{\varepsilon}(\mathbf{0})} (\nabla_{\mathbf{y}} f(\mathbf{x} - \mathbf{y})) \cdot \mathbf{n}(\mathbf{y}) \, \Phi(\mathbf{y}) \, dS(\mathbf{y}) = 0$$

where \boldsymbol{n} is the outward-pointing unit normal vector field to $\partial B_{\varepsilon}(\mathbf{0})$. (c) Let $\boldsymbol{y} \in \partial B_{\varepsilon}(\mathbf{0})$. Show that

$$\nabla \Phi(\boldsymbol{y}) \cdot \boldsymbol{n}(\boldsymbol{y}) = -\frac{1}{4\pi\varepsilon^2}.$$

(d) Use part (c) to show that for all $\boldsymbol{x} \in \mathbb{R}^3$

$$\lim_{\varepsilon \to 0} \int_{\mathbb{R}^3 \setminus B_{\varepsilon}(\mathbf{0})} \nabla \Phi(\mathbf{y}) \cdot \nabla_{\mathbf{y}} f(\mathbf{x} - \mathbf{y}) \, d\mathbf{y} = f(\mathbf{x}).$$

Hint: You may also use the following, which you do not need to prove:

$$\Delta \Phi(\boldsymbol{x}) = 0 \text{ for } \boldsymbol{x} \neq \boldsymbol{0}.$$

(e) Define $u: \mathbb{R}^3 \to \mathbb{R}$ by

$$u(\boldsymbol{x}) = \int_{\mathbb{R}^3} \Phi(\boldsymbol{y}) f(\boldsymbol{x} - \boldsymbol{y}) \, d\boldsymbol{y}.$$

Use parts (a), (b) and (d) to show that for all $\boldsymbol{x} \in \mathbb{R}^3$

$$-\Delta u(\boldsymbol{x}) = f(\boldsymbol{x}).$$

Hint: You may also use the following, which you do not need to prove:

$$\Delta u(\boldsymbol{x}) = \int_{\mathbb{R}^3} \Phi(\boldsymbol{y}) \Delta_{\boldsymbol{y}} f(\boldsymbol{x} - \boldsymbol{y}) \, d\boldsymbol{y}.$$

10. (a) Let $u: [0,1] \times [0,\infty) \to \mathbb{R}$ be a smooth solution of

$$u_t(x,t) - u_{xx}(x,t) = 0 \quad \text{for } (x,t) \in (0,1) \times (0,\infty),$$

$$u(x,0) = x(1-x) \quad \text{for } x \in (0,1),$$

$$u(0,t) = u(1,t) = 0 \quad \text{for } t \in [0,\infty).$$

(a1) Define $v(x,t) = x(1-x)e^{-\beta t}$. Find the largest value of $\beta_0 > 0$ such that for all $\beta \in (0, \beta_0]$

$$v_t - v_{xx} \ge 0 \quad \forall \ (x,t) \in (0,1) \times (0,\infty).$$

(a2) For all $\beta \in (0, \beta_0]$, prove that

$$0 \le u(x,t) \le x(1-x)e^{-\beta t} \quad \forall \ (x,t) \in (0,1) \times (0,\infty).$$

(b) Let $\Omega \subset \mathbb{R}^n$ be open and bounded with smooth boundary and $f : \Omega \to \mathbb{R}$ be smooth. Consider the semilinear elliptic PDE

$$-\Delta u + c(u) = f \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial\Omega.$$
 (4)

where $c : \mathbb{R} \to \mathbb{R}$ is a smooth, non-decreasing function, i.e., $c(t) \ge c(s)$ if $t \ge s$. Prove that (4) has at most one smooth solution.

SECTION C

11. Recall that, for $a \in \mathbb{R}$, δ_a is the distribution defined by $(\delta_a, \varphi) = \varphi(a)$ for all $\varphi \in \mathcal{D}(\mathbb{R})$. Let $n \in \mathbb{N}$, and consider the sequence of functions $u_n : \mathbb{R} \to \mathbb{R}$ given by

$$u_n(x) = \begin{cases} 0 & \text{for } x \le 0, \\ nx & \text{for } 0 < x < 1/n, \\ 1 & \text{for } x \ge 1/n. \end{cases}$$

- (a) Compute the distributional derivative u'_n .
- (b) Prove that $u'_n \to \delta_0$ as $n \to \infty$, in the sense of distributions.
- (c) Prove that $\sqrt{u'_n} \to 0$ as $n \to \infty$, in the sense of distributions.