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SECTION A

1. Consider the conservation law{
ut + uux = 0 for (x, t) ∈ R× (0, T ),

u(x, 0) = e−(x−1)2 for x ∈ R. (1)

(a) Find the largest value of T ∈ R for which this conservation law has a classical
solution u : R× [0, T )→ R.

(b) Give a sketch of the characteristics of (1) up until time T .

(c) Find an implicit equation for u that does not contain partial derivatives.

2. Consider the conservation law{
ut + (f(u))x = 0 for (x, t) ∈ R× (0,∞),
u(x, 0) = g(x) for x ∈ R. (2)

(a) Define the Rankine-Hugoniot condition for a shock.

(b) Define the Lax entropy condition for a shock.

(c) Let

g(x) =

{
1 for x < 0,
0 for x > 0,

and f(u) =
1

4
u4.

Consider the functions

u1(x, t) =

{
1 for x < t/2,
0 for x > t/2,

and u2(x, t) =

{
1 for x < t/4,
0 for x > t/4.

Which one of these two functions is a weak solution of (2)?
Is it also an admissible solution in the sense of the Lax entropy condition?

3. State the theorem of local existence for first-order quasilinear PDEs{
a1(x, y, u)ux + a2(x, y, u)uy = b(x, y, u) for (x, y) ∈ Ω,
u(x, y) = u0(x, y) for (x, y) ∈ Γ,

in the following steps:

(a) State the assumptions on the Cauchy data Γ and u0.

(b) State the assumptions on the coefficients a1, a2, b.

(c) State what is means for the data to be noncharacteristic.

(d) State the result of the theorem.
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4. (a) LetB1(0) ⊂ R2 be the unit ball in two dimensions. Suppose that u : B1(0)→ R
satisfies

−∆u = g in B1(0),

∇u · n = 1 + α on ∂B1(0),

where

g(x) =

{ 1
|x| sin(2π|x|) if x 6= 0,

2π if x = 0,

and where n is the outward-pointing unit normal vector field to ∂B1(0), and
α ∈ R is a constant. Find α.

(b) State the Poincaré inequality for functions f ∈ C1([a, b]).

5. (a) State the strong maximum principle for harmonic functions.

(b) Let Ω ⊂ Rn be open, bounded and connected. Let u ∈ C2(Ω) ∩ C(Ω) satisfy

−∆u = f in Ω,

u = g on ∂Ω,

and let v ∈ C2(Ω) ∩ C(Ω) satisfy

−∆v = f in Ω,

v = h on ∂Ω,

where f, g, h : Ω→ R. Assume that g ≤ h and that there exists x0 ∈ ∂Ω such
that g(x0) < h(x0). Show that u < v in Ω.

6. Let Ω ⊂ R2 be open and bounded with smooth boundary. Let

V = {ϕ ∈ C1(Ω) : ϕ = 0 on ∂Ω}.

Define E : V → R by

E[v] =
1

2

∫
Ω

∇v · (A∇v) dx−
∫

Ω

fv dx,

where f : Ω → R is smooth and A : Ω → R2×2 is a smooth, matrix–valued map
such that A(x) is symmetric for all x ∈ Ω. Assume that u ∈ C2(Ω) ∩ V minimises
E:

E[u] = min
v∈V

E[v].

Show that u satisfies the elliptic PDE

−div (A∇u) = f in Ω.
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SECTION B

7. Let a ∈ R be a constant. Consider the first order PDE{
aux + xyuy = xu, (x, y) ∈ R2,
u(0, y) = f(y), y ∈ R, (3)

where f : R→ R is an arbitrary continuous function.

(a) For which values of a is the initial condition in (3) noncharacteristic?

(b) Using the method of characteristics, solve (3) for all values of a for which the
initial condition is noncharacteristic.

(c) Take f(y) = y, a = 0. Prove that (3) has infinitely many solutions.

8. Consider the scalar conservation law{
ut + (f(u))x = 0,
u(x, 0) = u0(x),

where

u0(x) =

{
1 for x < 0,
3 for x > 0,

and f(u) =
1

3
u3.

(a) Write down the equation for the characteristics inside the regions

{x < t} and {x > 9t}.

(b) Verify that the following are weak solutions:

u1(x, t) =


1 for x < 7

3
t,

2 for 7
3
t < x < 4t,(

x
t

)1/2
for 4t < x < 9t,

3 for x > 9t,

u2(x, t) =


1 for x < t,(
x
t

)1/2
for t < x < 9t,

3 for x > 9t.

(c) Which of the solutions in part (b) satisfy the Lax entropy condition? Justify
your answer.
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9. Let f ∈ C2
c (R3) and let

Φ(x) =
1

4π|x|
be the fundamental solution of Poisson’s equation in R3.

(a) Show that for all x ∈ R3

lim
ε→0

∫
Bε(0)

Φ(y)∆yf(x− y) dy = 0.

Hint: You may use the following, which you do not need to prove:

‖Φ‖L1(Bε(0)) =
1

2
ε2.

(b) Show that for all x ∈ R3

lim
ε→0

∫
∂Bε(0)

(∇yf(x− y)) · n(y) Φ(y) dS(y) = 0

where n is the outward-pointing unit normal vector field to ∂Bε(0).

(c) Let y ∈ ∂Bε(0). Show that

∇Φ(y) · n(y) = − 1

4πε2
.

(d) Use part (c) to show that for all x ∈ R3

lim
ε→0

∫
R3\Bε(0)

∇Φ(y) · ∇yf(x− y) dy = f(x).

Hint: You may also use the following, which you do not need to prove:

∆Φ(x) = 0 for x 6= 0.

(e) Define u : R3 → R by

u(x) =

∫
R3

Φ(y)f(x− y) dy.

Use parts (a), (b) and (d) to show that for all x ∈ R3

−∆u(x) = f(x).

Hint: You may also use the following, which you do not need to prove:

∆u(x) =

∫
R3

Φ(y)∆yf(x− y) dy.
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10. (a) Let u : [0, 1]× [0,∞)→ R be a smooth solution of

ut(x, t)− uxx(x, t) = 0 for (x, t) ∈ (0, 1)× (0,∞),

u(x, 0) = x(1− x) for x ∈ (0, 1),

u(0, t) = u(1, t) = 0 for t ∈ [0,∞).

(a1) Define v(x, t) = x(1 − x)e−βt. Find the largest value of β0 > 0 such that
for all β ∈ (0, β0]

vt − vxx ≥ 0 ∀ (x, t) ∈ (0, 1)× (0,∞).

(a2) For all β ∈ (0, β0], prove that

0 ≤ u(x, t) ≤ x(1− x)e−βt ∀ (x, t) ∈ (0, 1)× (0,∞).

(b) Let Ω ⊂ Rn be open and bounded with smooth boundary and f : Ω → R be
smooth. Consider the semilinear elliptic PDE

−∆u+ c(u) = f in Ω,

u = 0 on ∂Ω,
(4)

where c : R→ R is a smooth, non-decreasing function, i.e., c(t) ≥ c(s) if t ≥ s.
Prove that (4) has at most one smooth solution.

SECTION C

11. Recall that, for a ∈ R, δa is the distribution defined by (δa, ϕ) = ϕ(a) for all
ϕ ∈ D(R). Let n ∈ N, and consider the sequence of functions un : R→ R given by

un(x) =


0 for x ≤ 0,
nx for 0 < x < 1/n,
1 for x ≥ 1/n.

(a) Compute the distributional derivative u′n.

(b) Prove that u′n → δ0 as n→∞, in the sense of distributions.

(c) Prove that
√
u′n → 0 as n→∞, in the sense of distributions.
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