

## **EXAMINATION PAPER**

Examination Session: May

2018

Year:

Exam Code:

MATH4161-WE01

#### Title:

# Algebraic Topology IV

| Time Allowed:                              | 3 hours |                                                                  |  |  |  |
|--------------------------------------------|---------|------------------------------------------------------------------|--|--|--|
| Additional Material provided:              | None    |                                                                  |  |  |  |
| Materials Permitted:                       | None    |                                                                  |  |  |  |
| Calculators Permitted:                     | No      | Models Permitted:<br>Use of electronic calculators is forbidden. |  |  |  |
| Visiting Students may use dictionaries: No |         |                                                                  |  |  |  |

| Instructions to Candidates: | Credit will be given for:<br>the best <b>FOUR</b> answers from Section<br>and the best <b>THREE</b> answers from S<br>Questions in Section B carry <b>TWICE</b><br>in Section A. | n A<br>Section B.<br>as many ma | arks as those |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------|
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------|

Revision:

### Exam code MATH4161-WE01

#### The following notations hold in this paper

- $\mathbb{R}^n$  denotes real *n*-space with the usual topology.
- $D^{n+1}$  and  $S^n$  denote the closed unit ball and unit sphere in  $\mathbb{R}^{n+1}$  with the subspace topology.
- For n a positive integer,  $\mathbb{Z}/n$  denotes the quotient group  $\mathbb{Z}/n\mathbb{Z}$ . Elements of  $\mathbb{Z}/n$  are denoted as  $\bar{k}$  for  $k \in \mathbb{Z}$ .

#### SECTION A

- 1. (a) What does it mean for two continuous maps to be *homotopic*? What does it mean for two spaces to be *homotopy equivalent*?
  - (b) Suppose that F is a functor from the category of topological spaces and continuous maps to some category C. Moreover, assume that F is a homotopy invariant functor, in the sense that if two maps f and g are homotopic then F(f) = F(g). Prove that F maps homotopy equivalent spaces to isomorphic objects in C.
  - (c) We say that a space X is *contractible* if the identity map  $id_X$  on X is homotopic to the constant map  $c_{x_0}$  for some  $x_0 \in X$ , where  $c_{x_0} \colon X \to X$  is defined by  $c_{x_0}(x) = x_0$  for all  $x \in X$ . Show that X is contractible if and only if X is homotopy equivalent to the one point space.
- 2. (a) Define the relative singular homology of a topological pair (X, A). You need not define the non-relative singular chain complex of a space.
  - (b) Write down the long exact sequence of the pair. Given  $x \in H_n(X, A)$  represented by a cycle  $\sigma$ , write down an expression for the image of x under the connecting map of this long exact sequence, briefly explaining any notation you use.
  - (c) Suppose that X is a CW complex with only even dimensional cells, and that A is a subcomplex of X. Prove that the relative homology groups  $H_n(X, A)$  are free abelian. What can we say about the ranks of the relative homology groups  $H_n(X, A)$ ?
- 3. (a) What is the suspension  $\Sigma X$  of a space X?
  - (b) Use the Mayer–Vietoris sequence to prove that  $\widetilde{H}_{n+1}(\Sigma X) \cong \widetilde{H}_n(X)$  for all  $n \in \mathbb{Z}$ .
  - (c) Prove that  $\mathbb{R}\mathbf{P}^2$  is not homeomorphic to  $\Sigma X$  for any space X.
- 4. Let X be a finite CW-complex consisting of one 0-cell, one 5-cell, and one 6-cell attached via a map  $\chi: S^5 \to X^5 = S^5$  of degree 25.
  - (a) Calculate  $H^*(X; \mathbb{Z}/n)$  for  $n \ge 2$  satisfying gcd(n, 5) = 1.
  - (b) Calculate  $H^*(X; \mathbb{Z}/n)$  for  $n \ge 2$  satisfying gcd(n, 5) = 5.



- 5. Let A, B be abelian groups.
  - (a) State the definition of Ext(A, B).
  - (b) Using this definition, calculate  $Ext(\mathbb{Z}/245, \mathbb{Z}/49)$ .

### 6. There is no question 6 on this paper.



#### SECTION B

- 7. (a) State Hurewicz's Theorem relating the homology and fundamental group of a path-connected space. Describe how the map in the statement of the theorem is constructed.
  - (b) Let (X, A) be a good pair, where  $A \cong S^1$  and X is simply connected (recall that this means that X is path-connected and has trivial fundamental group). What can we say about  $H_n(X/A)$  in terms of  $H_n(X)$ ?
  - (c) Dropping the condition that X is simply connected in the above, prove by examples that  $H_n(X|A)$  may depend on how  $A \cong S^1$  is embedded in X.
- 8. (a) What is meant by a *chain map* and a *chain homotopy* between two chain maps?
  - (b) Show that if the identity chain map on a chain complex  $C_*$  is chain homotopic to the zero chain map (the chain map which sends each chain to the zero element), then  $H_n(C) \cong 0$  for all  $n \in \mathbb{Z}$ .
  - (c) Suppose that each chain group  $C_n$  of  $C_*$  is a free abelian group, and that  $C_n \cong 0$  for n < 0. Prove that if  $H_n(C) \cong 0$  for all  $n \in \mathbb{Z}$  then the identity chain map is chain homotopic to the zero chain map.
  - (d) Find a chain complex  $C_*$  with  $C_1$  non-trivial,  $C_3 \cong \mathbb{Z}^2$  and with the identity chain map chain homotopic to the zero chain map on  $C_*$ .

| Page number |  |  |  |   |            |     |      |      |
|-------------|--|--|--|---|------------|-----|------|------|
| L           |  |  |  | 5 | <b>^</b> 1 | F 5 |      | I    |
| I.          |  |  |  | J | U          | 5   |      | - 1  |
| I.          |  |  |  |   |            |     |      |      |
| L           |  |  |  |   |            |     | <br> | <br> |
|             |  |  |  |   |            |     |      |      |

9. Let X be a topological space,  $A \subset X$  and  $C_*(X, A)$  the singular chain complex of the pair (X, A). For  $\sigma \colon \Delta^n \to X$  and  $i \in \{0, \ldots, n\}$  let  $F_i \sigma \colon \Delta^{n-1} \to X$  be the *i*-th face of  $\sigma$ . Then define  $\overline{\partial} \colon C_n(X, A) \to C_{n-1}(X, A)$  by

Exam code

MATH4161-WE01

$$\bar{\partial}\sigma = \sum_{i=0}^{n} F_i\sigma$$

$$\bar{\delta} \colon C^n(X, A; \mathbb{Z}/4) \to C^{n+1}(X, A; \mathbb{Z}/4)$$

be given by

$$\bar{\delta}\varphi=\varphi\circ\bar{\partial}.$$

Show that  $\bar{\delta}^4 = 0$ .

(c) Define

$$\bar{H}^n(X,A;\mathbb{Z}/4) = \ker(\bar{\delta}^2 \colon C^n(X,A;\mathbb{Z}/4) \to C^{n+2}(X,A;\mathbb{Z}/4))/$$
$$\operatorname{im}(\bar{\delta}^2 \colon C^{n-2}(X,A;\mathbb{Z}/4) \to C^n(X,A;\mathbb{Z}/4)).$$

Show that there is a long exact sequence

$$\cdots \longrightarrow \bar{H}^n(X; \mathbb{Z}/4) \longrightarrow \bar{H}^n(A; \mathbb{Z}/4) \longrightarrow \bar{H}^{n+2}(X, A; \mathbb{Z}/4) \longrightarrow$$
$$\longrightarrow \bar{H}^{n+2}(X; \mathbb{Z}/4) \longrightarrow \cdots$$

State any results from the lectures that you use.

(d) Calculate  $\overline{H}^n(P; \mathbb{Z}/4)$  for all  $n \ge 0$ , where P consists of exactly one point.

#### 10. There is no question 10 on this paper.