

EXAMINATION PAPER

Examination Session: May

2018

Year:

Exam Code:

MATH4171-WE01

Title:

Riemannian Geometry IV

Time Allowed:	3 hours	
Additional Material provided:	None	
Materials Permitted:	None	
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.
Visiting Students may use diction	onaries: No	l

Instructions to Candidates: Credit will be given for: the best FOUR answers from Section A and the best THREE answers from Section B. Questions in Section B carry TWICE as many marks as those in Section A.

Revision:

SECTION A

1. Let X, Y be two vector fields on \mathbb{R}^3 defined by

$$\begin{split} X(x,y,z) &= 2y\frac{\partial}{\partial x} + (z-2x)\frac{\partial}{\partial y} - y\frac{\partial}{\partial z}, \\ Y(x,y,z) &= -z\frac{\partial}{\partial x} + x\frac{\partial}{\partial z}. \end{split}$$

- (a) Calculate the Lie bracket [X, Y].
- (b) Let r > 0 and $S^2(r) = \{(x, y, z) \mid x^2 + y^2 + z^2 = r^2\}$ be the sphere of radius r. Show that the restriction of [X, Y] to $S^2(r)$ is a vector field on $S^2(r)$.
- 2. Let $M := \{(x, y, z) \mid x^2 + y^2 = z\}$ be the paraboloid. Choose a suitable coordinate chart $\varphi = (r, \alpha) : M \setminus \{(0, 0, 0)\} \to (0, \infty) \times (0, 2\pi)$ and calculate

$$\nabla_{\frac{\partial}{\partial r}}\frac{\partial}{\partial r}, \quad \nabla_{\frac{\partial}{\partial r}}\frac{\partial}{\partial \alpha}, \quad \nabla_{\frac{\partial}{\partial \alpha}}\frac{\partial}{\partial r}, \quad \nabla_{\frac{\partial}{\partial \alpha}}\frac{\partial}{\partial \alpha}.$$

- 3. Let (M, g) be a Riemannian manifold.
 - (i) Give the definition of the exponential map at a point $p \in M$.
 - (ii) Give the statement of the Gauss Lemma at a point $p \in M$.
 - (iii) Let $J : [a,b] \to TM$ be a Jacobi field along a geodesic $c : [a,b] \to M$ and $f(t) = ||J(t)||^2$. Show that if M has non-positive sectional curvature then $f''(t) \ge 0$.
- 4. (a) Define the Levi-Civita connection on a Riemannian manifold.
 - (b) Derive *Bianchi's first identity*

$$R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0$$

from *Jacobi's identity* [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]]. You don't need to prove Jacobi's identity.

5. The Heisenberg group is given by

Page number

3 of 6

$$H = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbb{R} \right\}.$$

H has a global coordinate chart $\varphi: H \to \mathbb{R}^3$ via

$$\varphi(\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}) = (x, y, z).$$

Let $e = \varphi^{-1}(0, 0, 0)$, $g = \varphi^{-1}(x, y, z)$, and $L_g, R_g : H \to H$ be the left- and rightmultiplication maps, defined by $L_g(h) = gh$ and $R_g(h) = hg$. Calculate the tangent vectors

$$DL_g(e)\left(\frac{\partial}{\partial y}|_e\right) \in T_gH$$
 and $DR_g(e)\left(\frac{\partial}{\partial z}|_e\right) \in T_gH$

in terms of $\frac{\partial}{\partial x}|_g, \frac{\partial}{\partial y}|_g, \frac{\partial}{\partial z}|_g$.

6. (i) Let $f : \mathbb{R}^n \to \mathbb{R}^k$ be a smooth map, $n > k, y \in f(\mathbb{R}^n)$ be a regular value, $M := f^{-1}(y)$ and $p \in M$. Show that

$$T_p M = \ker Df(p).$$

(ii) Let $Z = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1, z \in (0, 1)\}$ be a cylinder and $C = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z^2, z \in (0, 1)\}$ be a cone. Let $f : Z \to C$ be defined by f(x, y, z) = (zx, zy, z). Check that

$$p = \left(1, 0, \frac{1}{2}\right) \in Z$$
 and $v = \left(0, -1, \frac{1}{3}\right) \in T_p Z$

and calculate $Df(p)(v) \in T_{f(p)}C$.

SECTION B

7. Let $M(n, \mathbb{R})$ denote the set of all $n \times n$ matrices with real entries, $\text{Sym}(n) = \{A \in M(n, \mathbb{R}) \mid A^{\top} = A\}$ and

$$J = \begin{pmatrix} \mathrm{Id}_{n-1} & 0\\ 0 & -1 \end{pmatrix} \in M(n, \mathbb{R}),$$

where Id_k denotes the identity matrix on \mathbb{R}^k . Let

$$O(n-1,1) = \{A \in M(n,\mathbb{R}) \mid AJA^{\top} = J\}.$$

- (a) Show that all matrices in O(n-1,1) are invertible and that O(n-1,1) forms a group under matrix multiplication.
- (b) Let $f: M(n, \mathbb{R}) \to \text{Sym}(n)$ be defined as $f(A) = AJA^{\top}$. Show for $A, B \in M(n, \mathbb{R})$ that

$$Df(A)(B) = AJB^{\top} + BJA^{\top}$$

and conclude that for $A \in O(n-1,1)$ and $C \in \text{Sym}(n)$,

$$Df(A)\left(\frac{1}{2}CJA\right) = C.$$

- (c) Show that $J \in \text{Sym}(n)$ is a regular value of f.
- (d) Show that O(n-1,1) is differentiable manifold and determine its dimension.
- 8. (a) Let R be the curvature tensor of a Riemannian manifold (M, g). State the symmetry properties of R. Show that

$$R(X,Y)(fZ) = fR(X,Y)Z$$

for $X, Y, Z \in \mathfrak{X}(M)$ and $f \in C^{\infty}(M)$.

(b) Assume there exists a constant $C \in \mathbb{R}$ such that the curvature tensor R of (M, g) satisfies, for all $X, Y, W, Z \in \mathfrak{X}(M)$,

$$\langle R(X,Y)W,Z\rangle = C(\langle X,Z\rangle\langle Y,W\rangle - \langle X,W\rangle\langle Y,Z\rangle). \tag{*}$$

Show that (M, g) is then an Einstein manifold, that is, $\operatorname{Ric} = \lambda g$ for some function $\lambda \in C^{\infty}(M)$.

- (c) Let (M, g) be a Riemannian manifold and $c : [a, b] \to M$ a geodesic. Let $X \in \mathfrak{X}_c(M)$ be a parallel vector. Show that $t \mapsto \langle X(t), c'(t) \rangle$ is constant.
- (d) Let (M, g) be a Riemannian manifold satisfying (*) with a constant $C \leq 0$. Let $c : [a, b] \to M$ be a geodesic parametrised by arc-length and $X \in \mathfrak{X}_c(M)$ be a parallel vector field along c with $X(a) \perp c'(a)$. Show that then the vector field

$$J(t) = \cosh(\sqrt{-Ct})X(t)$$

is a Jacobi field along c.

Page number	Exam code
5 of 6	MATH4171-WE01
j	''

9. Let $\varphi^{-1}(x,y) = (f(x)\cos(y), f(x)\sin(y), h(x))$ with $f : [a,b] \to (0,\infty)$ and let $h: [a,b] \to \mathbb{R}$ be a coordinate chart of a surface of revolution, denoted by S. Assume that S carries the induced metric of the Euclidean \mathbb{R}^3 . Assume, furthermore, that

$$(f'(x))^2 + (h'(x))^2 = 1$$
 for all $x \in [a, b]$.

In this question, you may use without proof the following equalities:

$$\begin{aligned} \nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial x} &= 0, \\ \nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial y} &= \frac{f'(x)}{f(x)} \frac{\partial}{\partial y}, \\ \nabla_{\frac{\partial}{\partial y}} \frac{\partial}{\partial y} &= -f(x)f'(x) \frac{\partial}{\partial x}. \end{aligned}$$

- (a) Calculate the first fundamental form $(g_{ij}(x, y))$ of this coordinate chart and show that, for any fixed y_0 , the curves $c : [a, b] \to S$, defined by $c(t) = \varphi^{-1}(t, y_0)$, are geodesics and parametrised by arc-length.
- (b) Let $R_p : T_pM \times T_pM \times T_pM \to T_pM$ be the curvature tensor of a general Riemannian manifold (M, g) and $\Pi \subset T_pM$ a 2-plane spanned by $v, w \in T_pM$. Give the formula for the sectional curvature $K_p(\Pi)$ in terms of v, w.
- (c) Consider the geodesic variation $F : [y_1, y_2] \times [a, b] \to S$, $F(s, t) = \varphi^{-1}(t, s)$ of $c(t) = \varphi^{-1}(t, y_0)$ with $y_0 \in [y_1, y_2]$ and $X \in \mathfrak{X}_c(S)$ its variational vector field. Calculate $X'' = \frac{D^2}{dt}X$ explicitly. Give an explanation why X is a Jacobi field.
- (d) Let $p = \varphi^{-1}(x, y)$ with $(x, y) \in [a, b] \times [y_1, y_2]$. Use the explicit formula for X'' and the Jacobi equation X'' + R(X, c')c' = 0 to calculate the sectional curvature $K_p(T_pS)$.

10. Let $\mathbb{H}^2 = \{(x, y) \in \mathbb{R}^2 \mid y > 0\}$ be the hyperbolic plane with the identity as global coordinate chart and first fundamental form given by

$$(g_{ij}) = \begin{pmatrix} \frac{1}{y^2} & 0\\ 0 & \frac{1}{y^2} \end{pmatrix}.$$

We associate to $A \in \mathrm{SL}(2,\mathbb{R})$ the map $f_A : \mathbb{H}^2 \to \mathbb{H}^2$ via

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightsquigarrow f_A(z) = \frac{az+b}{cz+d},$$

by identifying \mathbb{H}^2 with $\mathbb{C} = \{ z = x + iy \in \mathbb{C} \mid y > 0 \}.$

(a) Show that

$$\operatorname{Im}(f_A(z)) = \frac{\operatorname{Im}(z)}{|cz+d|^2}.$$

(b) Use the formula $Df_A(z)(v) = \frac{1}{(cz+d)^2}v$ (without proof) to show that, for all $A \in SL(2,\mathbb{R}), z \in \mathbb{H}^2, v \in T_z\mathbb{H}^2$:

$$\langle Df_A(z)v, Df_A(z)v \rangle_{f_A(z)} = \langle v, v \rangle_z,$$

that is, f_A is an isometry.

(c) Show for $A, B \in SL(2, \mathbb{R})$ that

$$f_{AB} = f_A \circ f_B.$$

(d) Assume without proof that the non-zero Christoffel symbols of the above global coordinate chart at z = x + iy are

$$\Gamma_{22}^2(z) = \Gamma_{12}^1(z) = \Gamma_{21}^1(z) = \frac{-1}{y}, \quad \Gamma_{11}^2(z) = \frac{1}{y}.$$

Show that \mathbb{H}^2 has constant sectional curvature -1.