

EXAMINATION PAPER

Examination Session: May

2018

Year:

Exam Code:

MATH4181-WE01

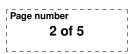
Title:

Mathematical Finance IV

Time Allowed:	3 hours			
Additional Material provided:	None			
Materials Permitted:	None			
Calculators Permitted:	Yes	Models Permitted: Casio fx-83 GTPLUS or Casio fx-85 GTPLUS.		
Visiting Students may use dictionaries: No				

Instructions to Candidates:	Credit will be given for: the best TWO answers from Section the best THREE answers from Section AND the answer to the question in Section B and C carry T those in Section A.	on B, ection C.	any marks as
-----------------------------	---	--------------------	--------------

Revision:



SECTION A

1. Consider a market that has an interest rate of 3%, continuously compounded, and a stock with a current share price of 70. Suppose that the market prices of three European call options on the stock, with expiry time 18 months, are as follows:

Strike price	Current price of option
40	32
60	16
80	6

Suppose also that a strangle option on the stock with the same expiry time is offered on the market, with contract function $\Phi(x) = \max\{|x - 70| - 10, 0\}$.

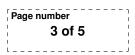
- (a) Draw the graph of the payoff of the strangle option against the share price of the underlying stock at expiry.
- (b) Calculate the current price of the strangle option that avoids arbitrage on the market.
- (c) Under what market conditions would you consider purchasing this strangle option?

2. Consider the one-period financial market $\mathcal{M} = (B_t, S_t)$ on two assets, where the risk-free asset price satisfies $B_0 = 1, B_1 = 1 + r$ and the risky asset price satisfies $S_0 = s$,

$$S_1 = \begin{cases} su & \text{with probability } p_u \\ sd & \text{with probability } p_d \end{cases}$$

where r > 0, s > 0, u > d > 0 are constant parameters and p_u and p_d are positive probabilities that sum to 1.

- (a) Prove that the market is arbitrage free if and only if d < 1 + r < u.
- (b) Assuming the market is arbitrage free, calculate the no-arbitrage price at time 0 of a contingent claim that returns +1 if $S_1 = su$ and -1 if $S_1 = sd$.
- 3. (a) State the Cox–Ross–Rubinstein formula for the price at time T t of a European call option with strike price K and expiry time T. What assumptions about the underlying stock behaviour are necessary for the formula to be valid?
 - (b) Use the formula to find the price at time 0 of a European call option with strike price 70 and expiry date 5 on a stock whose initial share price $S_0 = 100$ and which evolves according to a binomial model with parameters $u = 1.1, d = 0.9, p_u = 2/3, p_d = 1/3$ and interest rate r = 0.05.



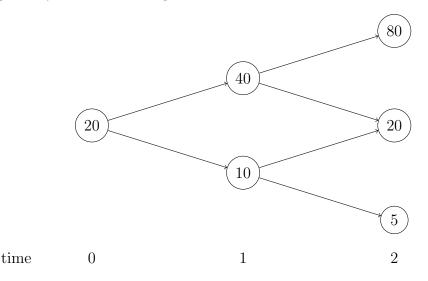
- 4. (a) State the Black–Scholes formula for the price C of a European call option on an underlying stock whose price follows a geometric Brownian motion. Define clearly any notation you use.
 - (b) Calculate $\Delta = \frac{\partial C}{\partial S}$, the derivative with respect to the current share price, and show that $0 \le \Delta \le 1$.
- 5. (a) State the definition of a Brownian motion.
 - (b) Suppose $(W_t)_{t\geq 0}$ and $(V_t)_{t\geq 0}$ are independent Brownian motions, and define $X_t = \alpha W_t + \beta V_t$. For which values of α and β is $(X_t)_{t\geq 0}$ a Brownian motion?
 - (c) Suppose that $(W_t)_{t \in [0,T]}$ is a Brownian motion on the time interval [0,T]. Prove that $(W_T W_{T-t})_{t \in [0,T]}$ is also a Brownian motion on the time interval [0,T].
- 6. Let $(W_t)_{t\geq 0}$ be a Brownian motion.
 - (a) Give the distribution of the Itô integral $I = \int_0^T f(t) dW_t$ for a deterministic function f(t).
 - (b) State the Itô isometry for a general Itô integral.
 - (c) Calculate $\mathbb{E}[\int_0^1 e^{W_t} dW_t]$ and $\mathbb{Var}[\int_0^1 e^{W_t} dW_t]$.

SECTION B

- 7. (a) State the definitions of a standard lookback call option and standard lookback put option on an underlying asset.
 - (b) Suppose the current share price of the asset is $S_0 = 40$ and evolves according to the binomial model with u = 5/4, d = 1/2, $p_u = 3/4$, $p_d = 1/4$ and that the interest rate is r = 1/8. Find the no-arbitrage prices at all times t = 0, 1, 2, 3 of both a standard lookback call option and a standard lookback put option on this asset with expiry time T = 3.
 - (c) A new "chooser option" is offered on the market based on the above options. The chooser option is sold at time 0 and at time 1 the holder must decide whether the option will be a lookback call option, or a lookback put option. What is the price at time 0 of this chooser option?
 - (d) Calculate the self-financing portfolio that replicates the option in part (c), in the case where the asset price increases at every time step.

Page number	-	-	ר ו
4 of 5			I
4015			1
			1
L	_	_	٦

8. Consider a 2-period financial market with possible share prices $S_t, t = 0, 1, 2$, of a risky asset given by the recombining tree:



Suppose the interest rate per time step is $r = \frac{1}{4}$.

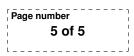
- (a) A European put option has a value of 2 at time 0. What is its strike price K_E ?
- (b) An American put option has a value of 2 at time 0. What is its strike price K_A ? (*Hint*: You might find it helpful to first explain which of $K_A \leq K_E$ or $K_A \geq K_E$ holds.)
- (c) What is the largest strike price K for which the values at time 0 of the European and American put options are the same?
- 9. (a) State Itô's Lemma for a smooth function $f(t, R_t)$ of time t and an Itô process $(R_t)_{t\geq 0}$.

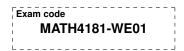
The Cox–Ingersoll–Ross model for the interest rate process $(R_t)_{t>0}$ is given by

$$\mathrm{d}R_t = (\alpha - \beta R_t)\mathrm{d}t + \sigma \sqrt{R_t}\mathrm{d}W_t$$

where α, β and σ and R_0 are positive constants, and $(W_t)_{t \ge 0}$ is a Brownian motion.

- (b) Calculate E[R_t] and Var[R_t].
 Hint: Applying Itô's Lemma to an appropriate function f(t, R_t) may simplify the calculation.
- 10. Suppose that a stock has a current price of £15, and moves as a geometric Brownian motion with drift $\mu = 0.1$ and volatility $\sigma = 0.2$, and suppose that the risk-free interest rate is 5% compounded continuously.
 - (a) Write down the continuous-time Black–Scholes differential equations that model the price dynamics of this market.
 - (b) Define clearly the risk-neutral measure, and state the risk-neutral valuation formula for a contingent claim X on the underlying stock.
 - (c) What is the value at time t of a cash-or-nothing binary option which pays off $\pounds 1$ if the share price is more than $\pounds 15$ in one year's time?
 - (d) Calculate the self-financing portfolio that replicates the option in part (c).





SECTION C

11. (a) Write down an approximate 95% confidence interval for EX in terms of the usual unbiased estimators for EX and VarX, based on a sample of size M. Justify your expression by appealing to the Central Limit Theorem.
[You may find some of the following values of the standard normal cdf useful.]

z	1.28	1.645	1.96
N(z)	0.9	0.95	0.975

- (b) Describe carefully a Monte Carlo algorithm for producing an approximate 95% confidence interval for the fair price at time 0 of a European option on an underlying risky asset with contract function $\Phi(S_T)$. State clearly any assumptions you make about the price of the underlying asset.
- (c) Let \widehat{C} and \widehat{P} be the unbiased estimators for the prices of a call option and put option with the same strike price K and expiry date T, computed by a Monte Carlo algorithm. Do \widehat{C} and \widehat{P} satisfy put-call parity? Justify your answer.
- (d) If both estimators in part (c) are calculated using the same random sample Z_1, \ldots, Z_M from a standard Normal distribution, find an expression for $\widehat{C} \widehat{P}$.