

EXAMINATION PAPER

Examination Session: May

2019

Year:

Exam Code:

MATH1061-WE02

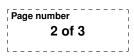
Title:

Calculus & Probability I paper 2: Probability

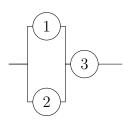
Time Allowed:	1 hour 30 minutes			
Additional Material provided:	None			
Materials Permitted:	None			
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.		
Visiting Students may use dictionaries: No				

Instructions to Candidates:	Credit will be given for your answers to each question. All questions carry the same marks.			

Revision:



- 1. (a) A bag contains 2 red marbles, 3 green marbles, and 5 blue marbles. Four marbles are randomly selected from the bag. Find the probability that the selection includes at least one marble of each colour.
 - (b) Suppose that X is a continuous random variable with probability density function f(x) = x for 0 < x < 1, f(x) = 2 - x for $1 \le x < 2$, and f(x) = 0otherwise. Find the cumulative distribution function $F_X(t)$ of X, for all t.
 - (c) Suppose that Y is a Poisson random variable with parameter $\lambda > 0$, so that $\mathbb{P}(Y = x) = e^{-\lambda} \lambda^x / x!$ for x = 0, 1, 2, ... Calculate $\mathbb{E}[Y(Y 1)]$.
- 2. A company manufactures Gizmos. The internal workings of each Gizmo can be represented by the following three-component reliability network:

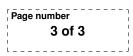


Assume that after one year of operation, component *i* either works, with probability p_i , or not, with probability $1 - p_i$. Different components are independent.

(a) Derive the probability $r(p_1, p_2, p_3)$ that a one-year old Gizmo works, as a function of p_1, p_2, p_3 .

Components are manufactured by an unreliable machine. Every component that is produced is either *good* or *bad*. An assessment after one year of life shows that good components work with probability 3/4 while bad components work with probability 1/2. Assessment of the machine shows that each component manufactured is good with probability 2/3, independently for each component.

- (b) Use this information to find p_1, p_2, p_3 and hence find the probability that a one-year old Gizmo works.
- (c) Suppose that a one-year old Gizmo fails. What is the probability that
 - i. all three components were bad;
 - ii. component 3 was bad but components 1 and 2 were good?



- 3. A fair coin is tossed n times. Let X be the total number of heads obtained, and let R = X/n be the relative frequency of heads.
 - (a) Compute $\mathbb{E}(R)$ and $\mathbb{V}ar(R)$.
 - (b) Use Markov's inequality to give an upper bound for $\mathbb{P}(R \geq 3/4)$.
 - (c) Find the smallest value of n for which Chebyshev's inequality gives the bound

$$\mathbb{P}\left(\left|R-\frac{1}{2}\right| \ge \frac{1}{20}\right) \le \frac{1}{100}.$$

(d) Find

$$\lim_{n \to \infty} \mathbb{P}\left(\left| R - \frac{1}{2} \right| \ge \frac{1}{\sqrt{n}} \right).$$

You may use the following values for the cumulative distribution function of the standard normal distribution:

- 4. A bag contains 1 red counter, 2 blue counters, and 3 green counters. Two counters are removed at random from the bag. Let X be the number of red counters removed, and let Y be the number of green counters removed.
 - (a) Write down in a table the joint distribution of X and Y.
 - (b) Find the marginal distributions of X and Y, and compute $\mathbb{E}(X)$ and $\mathbb{E}(Y)$.
 - (c) Find $\mathbb{C}ov(X, Y)$.
 - (d) Find $\mathbb{E}(X \mid Y = y)$ for each possible value y of Y, and verify that, in this example, $\mathbb{E}(X) = \mathbb{E}(\mathbb{E}(X \mid Y))$.
- 5. In this question, Γ denotes the Gamma function. In your answer you may use without proof the following identity (which you may take as the definition of Γ):

$$\int_0^\infty x^{a-1} e^{-bx} dx = \frac{\Gamma(a)}{b^a}, \text{ for } a > 0, b > 0.$$

For a positive integer k, a random variable X is said to have the $\chi^2(k)$ distribution, written $X \sim \chi^2(k)$, if it has probability density function

$$f_k(x) = \begin{cases} \frac{x^{(k/2)-1}e^{-x/2}}{2^{k/2}\Gamma(k/2)} & \text{if } x \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

(a) Show that the moment generating function of $X \sim \chi^2(k)$ is

$$M_X(t) = (1 - 2t)^{-k/2}$$
 for $t < 1/2$.

- (b) Suppose that $X \sim \chi^2(k)$ and $Y \sim \chi^2(\ell)$ are independent. What is the distribution of X + Y?
- (c) Show that if $X_k \sim \chi^2(k)$ for each k, then X_k/k converges in an appropriate sense as $k \to \infty$. Identify the limit.