

EXAMINATION PAPER

Examination Session: May

2019

Year:

Exam Code:

MATH1071-WE01

Title:

Linear Algebra I

Time Allowed:	3 hours		
Additional Material provided:	None		
Materials Permitted:	None		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.	
Visiting Students may use dictionaries: No			

arry the same marks. answer book for each Section.
\ a

Revision:

Exam code
MATH1071-WE01
1
L

SECTION A

Use a separate answer book for this Section.

1. (a) Let $\mathbb{R}[x]_n$ be the set of polynomials of degree at most n. Assume $n \ge 1$. Show that

$$p(x) \mapsto \frac{d}{dx}p(x)$$

is a linear map $\mathbb{R}[x]_n \to \mathbb{R}[x]_{n-1}$.

(b) Let $n \geq 3$ and consider the map $T : \mathbb{R}[x]_n \to \mathbb{R}[x]_n$ given by

$$T: p(x) \mapsto 6p(x) + p'(x) - x^2 p''(x).$$

You may assume T is linear. Determine the nullity of T.

- 2. We write $M_n(\mathbb{R})$ for the set of $n \times n$ matrices with real entries.
 - (a) Let $A \in M_n(\mathbb{R})$. Define

$$S_A: M_n(\mathbb{R}) \to M_n(\mathbb{R})$$

by $S_A(B) = AB$ for all $B \in M_n(\mathbb{R})$. Show that S_A is a linear map.

(b) Compute the rank and nullity of S_A when

$$A = \begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix}.$$

3. (a) Determine if the following set is a basis of \mathbb{R}^4 .

$$\left\{ \begin{pmatrix} 1\\1\\3\\-2 \end{pmatrix} \begin{pmatrix} 2\\1\\-2\\1 \end{pmatrix} \begin{pmatrix} 2\\3\\4\\1 \end{pmatrix} \begin{pmatrix} 3\\0\\-3\\-3 \end{pmatrix} \right\}.$$

(b) For each $a \in \mathbb{R}$, determine those values of $X \in \mathbb{R}$ for which the determinant of the following matrix is 0.

4. (a) Determine if the following matrix is invertible and, if it is, compute the inverse matrix.

$$\begin{pmatrix} 2 & 2 & 1 \\ 1 & 0 & 2 \\ 3 & 1 & 5 \end{pmatrix}.$$

(b) Give the solution set to the following system of linear equations.

$$w + 4x + 3y + z = 0,$$

 $w + 5x + 4y + 2z = 0,$
 $w - x + y - z = 0.$

5. We write $M_n(\mathbb{R})$ for the set of $n \times n$ matrices with real entries. For $A \in M_n(\mathbb{R})$, we define

$$U_A = \{B \in M_n(\mathbb{R}) : AB = BA\} \subseteq M_n(\mathbb{R})$$

and

$$V_A = \{B \in M_n(\mathbb{R}) : AB = -BA\} \subseteq M_n(\mathbb{R}).$$

You may assume that U_A and V_A are vector subspaces of $M_n(\mathbb{R})$.

(a) In the case

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

compute the dimensions of U_A , of V_A , and of $U_A \cap V_A$.

(b) Now let $A \in M_n(\mathbb{R})$. Suppose A has rank r for some r with $1 \leq r \leq n-1$. Show that $U_A \neq M_n(\mathbb{R})$.

Exam code MATH1071-WE01

SECTION B

Use a separate answer book for this Section.

6. Find the general solution to the system of first order differential equations

$$\begin{aligned} \dot{x}_1(t) &= 5x_1(t) + 2x_2(t) + x_3(t) ,\\ \dot{x}_2(t) &= -8x_1(t) - 3x_2(t) - 2x_3(t) ,\\ \dot{x}_3(t) &= 4x_1(t) + 2x_2(t) + 2x_3(t) . \end{aligned}$$

7. Let V be the vector space $\mathbb{R}[x]_2$ of real polynomials of degree at most two and let $\mathcal{L}: V \mapsto V$ be the linear operator

$$\mathcal{L}(p(x)) = \lambda x^2 p''(x) + xp'(x) + p(x+1)$$

with $p(x) \in \mathbb{R}[x]_2$, p'(x) = dp(x)/dx, and $\lambda \in \mathbb{R}$. Determine for which value of $\lambda \in \mathbb{R}$ the linear operator \mathcal{L} has an eigenvalue equal to 0 and in that case find the corresponding eigenfunction.

8. (a) Show that

$$(\mathbf{z}, \mathbf{w}) = 3z_1\bar{w}_1 + iz_2\bar{w}_1 - iz_1\bar{w}_2 + 4z_2\bar{w}_2$$

defines an inner product on $V = \mathbb{C}^2$ and, using this inner product, find the norm of the vector

$$\mathbf{u} = \begin{pmatrix} i \\ i \end{pmatrix}$$
.

(b) Let V be the vector space $\mathbb{R}[x]_2$ of real polynomials of degree at most two, with inner product

$$(p,q) = \int_0^1 p(x)q(x) \, dx$$
.

Using this inner product find a basis for the orthogonal complement U^{\perp} of the vector subspace $U = \operatorname{span}\{x\} \subseteq V$.

- 9. (a) Let A, B be $n \times n$ matrices such that AB = BA. If **v** is an eigenvector of A and if $B\mathbf{v} \neq \mathbf{0}$ show that $B\mathbf{v}$ is also an eigenvector for A.
 - (b) Let C be an $n \times n$ anti-hermitian matrix. Show that its eigenvalues are imaginary numbers, i.e. $\lambda = ix$ with $x \in \mathbb{R}$.
- 10. Let

$$G = \mathbb{Z}_2 \times \mathbb{Z}_3$$

be the direct product of the two cyclic groups \mathbb{Z}_2 and \mathbb{Z}_3 . Firstly write down the group table for G and secondly find an element of G with order 6.