

EXAMINATION PAPER

Examination Session: May

2019

Year:

Exam Code:

MATH1551-WE01

Title:

Mathematics for Engineers and Scientists

Time Allowed:	3 hours		
Additional Material provided:	Formula sheet		
Materials Permitted:	None		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.	
Visiting Students may use dictionaries: No			

Instructions to Candidates:	Credit will be given for your answers All questions carry the same marks.	to each ques	stion.

Revision:

- 1. (i) Find the modulus and argument of $(i \sqrt{3})^n$ for any $n \in \mathbb{Z}$. (You do not need to find the principal value of the argument.)
 - (ii) Find all complex solutions of the equation $z^8 5iz^4 + 6 = 0$, leaving your answers in polar form.
 - (iii) State de Moivre's Theorem and use it to express $\cos(4\theta)$ as a function of $\cos \theta$. Deduce from your result that $\cos(\pi/8) = \frac{1}{2}\sqrt{2+\sqrt{2}}$.
- 2. (i) Compute the limit

$$\lim_{x \to 0} \frac{\sin^2(2x)}{\sin(3x)\sin(4x)}$$

carefully stating any standard results you use.

(ii) Use l'Hôpital's rule to compute the limit

$$\lim_{x \to 0} \left(\frac{1}{x \tan x} - \frac{1}{x^2} \right).$$

- (iii) State the definition of the derivative of a function f(x) as a limit. Use it to find the derivative of $1/x^3$ for $x \neq 0$.
- 3. (i) State Leibniz' Rule for the n^{th} derivative of a product f(x) = u(x)v(x) and use it to find the 4^{th} derivative of $\frac{\ln x}{x^2}$.
 - (ii) Calculate the degree 2 Taylor polynomial of the function $f(x) = \sqrt{2+x}$ about the point x = 0. Estimate the maximum error in using this polynomial to approximate f(x) over the interval $0 \le x \le 0.1$.
 - (iii) Show that there is at least one solution to the equation $x^4 = 4x + 4$ in the interval 1 < x < 2, stating any standard theorems you use. Given an approximate solution x_n to the equation, find an iteration that should give a better approximation x_{n+1} and apply it to find x_1 , starting from $x_0 = 2$.
- 4. (i) A plane passes through the points A = (1, 2, 3), B = (2, 3, 5) and C = (1, 4, 6). Find the angle between a normal vector to the plane and the z-axis.
 - (ii) A strip is removed from the plane x 2y + 3z = 4 by cutting along the planes z = 0 and z = 1. Find parametric equations for the edges of the strip and hence find its width.
 - (iii) Let $\mathbf{A}(x, y, z) = (A_1(x, y, z), A_2(x, y, z), A_3(x, y, z))$ be a vector field. Assuming that the order of mixed partial derivatives doesn't matter, prove that the divergence of the curl of \mathbf{A} is zero, i.e. show that

$$\nabla \cdot (\nabla \times \mathbf{A}) = 0.$$

г I	Page number	-	-	
I.	3 of 3			
i	0010			
L		_	_	

- 5. (i) Let S be the surface with equation x²+2yz = 2 and let p be the point (2, 1, -1) on S. Find a Cartesian equation for the tangent plane to S at p. Also find a Cartesian equation for the line L which is normal to S at p and hence find the other point where L intersects S.
 - (ii) Determine all critical points of the function

$$f(x,y) = x^2y^2 - x^2 - y^2 + 1$$

and identify each as a local minimum, local maximum or saddle point.

6. (i) Find the solution to the first order differential equation

$$y' - 4xy = e^{2x^2}$$

with initial condition y(0) = 1.

(ii) Find the solution to the second order differential equation

$$y'' - 4y = e^{2x}$$

with initial conditions y(0) = y'(0) = 0.

7. (i) Find the LU decomposition of the matrix

$$A = \begin{pmatrix} 1 & 2 & 4 \\ 3 & 8 & 14 \\ -2 & 4 & -5 \end{pmatrix}.$$

Use it, together with forward and backward substitution to solve

$$x + 2y + 4z = 1$$
$$3x + 8y + 14z = 3$$
$$-2x + 4y - 5z = 3.$$

(ii) Rearrange the system of equations

$$x + y - 3z = 2$$

$$2x - 4y + z = 3$$

$$4x - y - z = 1$$

so that it will converge under the Gauss-Seidel iteration method for any given initial values, stating why. Write out the resulting iteration and hence find the next approximation given that the initial guess is $(x^{(0)}, y^{(0)}z^{(0)}) = (1, -1, -2)$.

8. Calculate the eigenvalues and corresponding eigenspaces of the matrix

$$A = \begin{pmatrix} 3 & -1 & 2 \\ 0 & 2 & 0 \\ -1 & 1 & 0 \end{pmatrix}.$$

Hence find an invertible matrix M and diagonal matrix D so that $M^{-1}AM = D$.

UNIVERSITY OF DURHAM

Formula sheet for Mathematics for Engineers & Scientists (MATH1551/WE01)

TRIGONOMETRIC FUNCTIONS

 $\sin(A+B) = \sin A \cos B + \cos A \sin B$ $\cos(A+B) = \cos A \cos B - \sin A \sin B$ $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ $\cos^2 A + \sin^2 A = 1$ $1 + \tan^2 A = \sec^2 A$ $1 + \cot^2 A = \csc^2 A$ $\sin A \cos B = \frac{1}{2} (\sin(A+B) + \sin(A-B))$ $\cos A \cos B = \frac{1}{2} (\cos(A+B) + \cos(A-B))$ $\sin A \sin B = \frac{1}{2} (\cos(A-B) - \cos(A+B))$ $\cos C + \cos D = 2 \cos \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$ $\sin C + \sin D = 2 \sin \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$ $\sin C - \sin D = 2 \cos \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right)$

 $\cosh x = \frac{e^x + e^{-x}}{2}$ $\sinh x = \frac{e^x - e^{-x}}{2}$ $\cosh^{-1} x = \ln \left(x \pm \sqrt{x^2 - 1} \right)$ $\sinh^{-1} x = \ln \left(x + \sqrt{x^2 + 1} \right)$ $\cosh^{-1} x = \ln \left(x + \sqrt{x^2 + 1} \right)$ $\cosh(iA) = \cos A$ $\sinh(iA) = i \sin A$ $\cosh^2 A - \sinh^2 A = 1$ $\cosh(A + B) = \cosh A \cosh B + \sinh A \sinh B$ $\sinh(A + B) = \sinh A \cosh B + \cosh A \sinh B$ $\tanh(A + B) = \sinh A \cosh B + \cosh A \sinh B$

ELEMENTARY RULES FOR DIFFERENTIATION AND INTEGRATION

 $(u+v)' = u'+v', \quad (uv)' = u'v+uv', \quad \left(\frac{u}{v}\right)' = \frac{u'v-uv'}{v^2}, \quad (u(v))' = u'(v)v', \quad \int u'v \, dx = uv - \int uv' \, dx$

TAYLOR'S THEOREM

Taylor approximation:
$$f(x) \approx p_{n,a}(x) = f(a) + f'(a)(x-a) + \dots + \frac{1}{n!}f^{(n)}(a)(x-a)^n$$

and if $|f^{(n+1)}(x)| \le M$ for $c \le x \le b$ then $|f(x) - p_{n,a}(x)| \le \frac{|x-a|^{n+1}}{(n+1)!}M$

DIFFERENTIAL OPERATORS

grad
$$f = \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$

div $\mathbf{A} = \nabla \cdot \mathbf{A} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot (A_1, A_2, A_3) = \frac{\partial A_1}{\partial x} + \frac{\partial A_2}{\partial y} + \frac{\partial A_3}{\partial z}$
curl $\mathbf{A} = \nabla \times \mathbf{A} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_1 & A_2 & A_3 \end{vmatrix} = \left(\frac{\partial A_3}{\partial y} - \frac{\partial A_2}{\partial z}\right) \mathbf{i} + \left(\frac{\partial A_1}{\partial z} - \frac{\partial A_3}{\partial x}\right) \mathbf{j} + \left(\frac{\partial A_2}{\partial x} - \frac{\partial A_1}{\partial y}\right) \mathbf{k}$

TABLE OF DERIVATIVES			
y(x)	$\frac{dy}{dx}$		
x^n	nx^{n-1}		
$\ln x$	x^{-1}		
e^x	e^x		
$\sin x$	$\cos x$		
$\cos x$	$-\sin x$		
$\tan x$	$\sec^2 x$		
$\operatorname{cosec} x$	$-\csc x \cot x$		
$\sec x$	$\sec x \tan x$		
$\cot x$	$-\operatorname{cosec}^2 x$		
$\sinh x$	$\cosh x$		
$\cosh x$	$\sinh x$		
$\tanh x$	$\operatorname{sech}^2 x$		
$\tan^{-1} x$	$\frac{1}{1+x^2}$		
$\sin^{-1}x$	$\frac{1}{\sqrt{1-x^2}}$		
$\cos^{-1}x$	$\frac{-1}{\sqrt{1-x^2}}$		
$\sinh^{-1}x$	$\frac{1}{\sqrt{1+x^2}}$		
$\cosh^{-1} x$	$\frac{1}{\sqrt{x^2 - 1}}$		

TABLE OF INTEGRALS

f(x)	$\int f(x)dx$
x^n	$\frac{x^{n+1}}{n+1} (n \neq -1)$
x^{-1}	$\ln x $
e^x	e^x
$\sin x$	$-\cos x$
$\cos x$	$\sin x$
$\tan x$	$-\ln \cos x $
$\operatorname{cosec} x$	$-\ln \csc x + \cot x $
$\sec x$	$\ln \sec x + \tan x $
$\cot x$	$\ln \sin x $
$\sinh x$	$\cosh x$
$\cosh x$	$\sinh x$
$\tanh x$	$\ln \cosh x $
$\frac{1}{a^2 + x^2}$	$\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right)$
$\frac{1}{\sqrt{a^2 - x^2}}$	$\sin^{-1}\left(\frac{x}{a}\right) \qquad (a > x)$
$\frac{1}{\sqrt{a^2 + x^2}}$	$\sinh^{-1}\left(\frac{x}{a}\right)$
1	$\cosh^{-1}\left(\frac{x}{x}\right)$ $(x > a)$
$\sqrt{x^2 - a^2}$	$\left(\frac{-}{a}\right)$ $\left(\frac{x > a}{a}\right)$

CRITICAL POINTS

Local maximum:	$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$	and	$\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial y \partial x}\right)^2 > 0$	and	$\frac{\partial^2 f}{\partial x^2} < 0$
Local minimum:	$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$	and	$\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial y \partial x}\right)^2 > 0$	and	$\frac{\partial^2 f}{\partial x^2} > 0$
Saddle point:	$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$	and	$\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial y \partial x}\right)^2 < 0$		
Inconclusive:	$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$	and	$\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial y \partial x}\right)^2 = 0$		

ITERATION METHODS

$$A \mathbf{x} = \mathbf{b}, \qquad A = D - L - U, \qquad T_j = D^{-1}(L+U), \qquad T_g = (D-L)^{-1}U$$
 Jacobi's Method:

$$D \mathbf{x}^{(k+1)} = \mathbf{b} + (L+U) \mathbf{x}^{(k)}, \qquad \mathbf{x}^{(k+1)} = D^{-1} \mathbf{b} + D^{-1} (L+U) \mathbf{x}^{(k)}$$

Gauss-Seidel Method:

$$D \mathbf{x}^{(k+1)} = \mathbf{b} + L \mathbf{x}^{(k+1)} + U \mathbf{x}^{(k)}, \qquad \mathbf{x}^{(k+1)} = (D - L)^{-1} \mathbf{b} + (D - L)^{-1} U \mathbf{x}^{(k)}$$

R Method:

SOR Method:

$$\mathbf{x}^{(k+1)} = (1 - \omega) \,\mathbf{x}^{(k)} + \omega D^{-1} \,\left(\mathbf{b} + L \,\mathbf{x}^{(k+1)} + U \,\mathbf{x}^{(k)}\right)$$
$$\omega = \frac{2}{1 + \sqrt{1 - \rho \left(T_j\right)^2}}$$

Optimal Value: