

EXAMINATION PAPER

Examination Session: May

2019

Year:

Exam Code:

MATH2011-WE01

Title:

Complex Analysis II

Time Allowed:	3 hours			
Additional Material provided:	None			
Materials Permitted:	None			
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.		
Visiting Students may use dictionaries: No				

the best FOUR answers from Section A	Instructions to Candidates:	Credit will be given for: the best FOUR answers from Section and the best THREE answers from S Questions in Section B carry TWICE in Section A.	n A lection B. as many ma	arks as those
L THE DEST FUTHE ANSWERS from Section A		the best FUUR answers from Section	IA	
			.,.	
		and the heat TUDEE answers from C	action D	
		and the best INKEE answers from S	ection B.	
and the best THREE answers from Section B.				
and the best THREE answers from Section B.		in Section A.	as many ma	irks as those
and the best THREE answers from Section B. Questions in Section B carry TWICE as many marks as those in Section A.				
and the best THREE answers from Section B. Questions in Section B carry TWICE as many marks as those in Section A.				
and the best THREE answers from Section B. Questions in Section B carry TWICE as many marks as those in Section A.				
and the best THREE answers from Section B. Questions in Section B carry TWICE as many marks as those in Section A.				
and the best THREE answers from Section B. Questions in Section B carry TWICE as many marks as those in Section A.				
and the best THREE answers from Section B. Questions in Section B carry TWICE as many marks as those in Section A.				
and the best THREE answers from Section B. Questions in Section B carry TWICE as many marks as those in Section A.				
and the best THREE answers from Section B. Questions in Section B carry TWICE as many marks as those in Section A.			Desided as	

Revision:

SECTION A

- 1. (a) Let $U \subset \mathbb{C}$ be an open set. Define what it means for a function $f: U \to \mathbb{C}$ to be complex differentiable at a point $z_0 \in U$.
 - (b) State the Cauchy-Riemann equations.
 - (c) Let $U = \{z = x + iy \in \mathbb{C} : x > 0\}$ be the right half plane. Consider the function $f: U \to \mathbb{C}$ defined by

$$f(x+iy) = \frac{1}{2}\log(x^2+y^2) + i\arctan\left(\frac{y}{x}\right).$$

Here log denotes the real logarithm. Use the Cauchy-Riemann equations to determine the points $z_0 \in U$ where f is complex differentiable.

- 2. (a) Describe all the Möbius transformations that map the upper half plane $\mathbb{H} = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ to itself.
 - (b) Find a Möbius transformation that maps \mathbb{H} to itself and maps i to i and -1+i to 1+2i.
- 3. (a) Let $U \subset \mathbb{C}$, and $\{f_n\}_{n=1}^{\infty}$ be a sequence of functions $f_n : U \to \mathbb{C}$. State the M-test for the series $\sum_{n=1}^{\infty} f_n$ to converge uniformly on U.
 - (b) Prove that for any r with 0 < r < 1 the series

$$\sum_{n=1}^{\infty} \frac{z^n}{1+z^{2n}}$$

converges uniformly on $\{z : |z| \leq r\} \subset \mathbb{C}$.

4. (a) Find all the zeros and poles, with their orders, of

$$f(z) = \frac{z}{\sin z + \cos z}.$$

- (b) Find the residue of f at each of its poles.
- 5. (a) State Liouville's theorem.
 - (b) Let f be a holomorphic function on $\mathbb{C} \{0\}$. Show that f is bounded if and only if f is constant. State clearly any results you use from lectures.
- 6. (a) State Cauchy's Theorem for starlike domains.

(b) Let

$$f(z) = \frac{1}{z^2} + e^{z^2}$$

be defined on $\mathbb{C} - \{0\}$. Prove that there exists a holomorphic function $F : \mathbb{C} - \{0\} \to \mathbb{C}$ such that F'(z) = f(z) for all $z \in \mathbb{C} - \{0\}$. State clearly any results you use from lectures.

SECTION B

- 7. (a) Explain why if $f: D \to \mathbb{C}$ is a holomorphic function on a domain D with f(x+iy) = u(x,y) + iv(x,y), then u is a harmonic function.
 - (b) Let $u(x, y) = e^x x \cos y e^x y \sin y$. Find a harmonic function $v : \mathbb{C} \to \mathbb{R}$ such that f = u + iv is a holomorphic function on \mathbb{C} .
 - (c) Let f = u + iv be the function from part b). Calculate the complex derivative f'(0).
- 8. (a) Find a Möbius transformation taking the region $\mathcal{R}_1 = \{z : |z| < 1, \text{Im}(z) < 0\}$ (the lower half of the unit disc) to the upper half plane $\mathbb{H} = \{z : \text{Im}(z) > 0\}$.
 - (b) Find a conformal map that maps the region \mathcal{R}_1 to $\mathcal{R}_2 = \{z : |z| < 1\} \mathbb{R}_{\leq 0}$ (the unit disc with the non positive reals removed).
 - (c) Find the image of \mathcal{R}_2 under the principal branch of log.
- 9. For $0 < \epsilon < R$, consider the closed contour

$$\gamma_{\epsilon,R} = L_2 + \widetilde{C_{\epsilon}} + L_1 + C_R,$$

where L_2 is the straight line running from -R to $-\epsilon$, $\widetilde{C_{\epsilon}}(\theta) = \epsilon e^{-i\theta}$, $\theta \in [-\pi, 0]$, L_1 is the straight line running from ϵ to R, and $C_R(\theta) = Re^{i\theta}$, $\theta \in [0, \pi]$.

(a) Let $g(z) = \frac{e^{iz}}{z}$. Calculate

$$\int_{\gamma_{\epsilon,R}} g(z) dz$$

- (b) Show that $\lim_{R\to\infty} \int_{C_R} g(z) dz = 0$. You may use results from lectures provided they are stated clearly.
- (c) Show that $\lim_{\epsilon \to 0} \int_{\tilde{C}_{\epsilon}} g(z) dz = -\pi i$. Again, you may use results from lectures provided they are stated clearly.
- (d) By integrating g(z) over $\gamma_{\epsilon,R}$ and using a), b) and c) show that

$$\int_0^\infty \frac{\sin(x)}{x} \, dx = \frac{\pi}{2}.$$

- 10. (a) State Cauchy's residue theorem for simple closed contours.
 - (b) By using the substitution $z = e^{i\theta}$, or otherwise, evaluate the integral

$$\int_0^{2\pi} \frac{1}{1+3\cos^2(\theta)} d\theta.$$