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SECTION A

1. An independent and identically distributed sample of size n, x = (x1, . . . , xn), is
drawn from a Poisson distribution with parameter λ.

(The Poisson distribution, with parameter λ, has probability mass function,

P(X = k) =
λke−λ

k!
, k = 0, 1, . . .)

For this sampling problem, answer the following questions.

(a) Find a sufficient statistic for λ and justify your answer.

(b) Find the maximum likelihood estimator λ̂ for λ. Show that it depends on the
sample only through the value of the sufficient statistic.

(c) Explain why the maximum likelihood estimator depends on the sample only
through the value of the sufficient statistic for any sampling problem for which
a sufficient statistic exists.

2. Suppose that a random quantity, X, is considered to have an exponential distribu-
tion, with parameter λ.

(The probability density function of the exponential distribution is

f(x|λ) = λe−λx, x > 0.)

(a) Find the expectation and variance of X.

(b) In order to test the value of λ, an independent sample of size n, X1, . . . , Xn,
is taken. We wish to test the null hypothesis, H0, that λ = 1 against the
alternative hypothesis, H1, that λ = 2, at significance level α. Find the most
powerful test of H0 against H1. (State, without proof, any results that you use
to demonstrate that the test is most powerful.)

(c) Suppose that n = 50, and the chosen significance level is 0.05. Find, approxi-
mately, the critical value for this test, and the power of the test.

3. A particular test of proficiency at a particular skill classifies each individual taking
the test as having high or low skill. In a random sample of 200 tested individuals
from a given target group, the gender of each individual was also recorded. The
data was as follows.

High Low
Male 42 45
Female 64 49

Test whether there is an association between skill and gender. State carefully the
hypothesis that is being tested and explain the calculations that are carried out in
order to apply the test.
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4. Suppose that three random variables X1, X2, X3 have a continuous joint distribution
with probability density function

fX1,X2,X3(x1, x2, x3) = 8x1x2x3 for 0 < xi < 1, i = 1, 2, 3

and 0 otherwise. Let Y1 = X1, Y2 = X1X2, and Y3 = X1X2X3.

(a) Show that the joint probability density function of Y1, Y2 is

fY1,Y2(y1, y2) = 4
y2

y1

for 0 < y2 < y1 < 1

and 0 otherwise.

(b) Derive the conditional probability density function of Y2|Y1.

(c) Are Y1 and Y2 independent?

5. Soil respiration is a measure of microbial activity in soil, which affects plant growth.
In one study, soil cores were taken from two types of locations in a forest: under
openings in the forest canopy (“Open”), and under heavy tree growth (“Growth”).
The level of soil respiration was assessed by measuring the amount of carbon dioxide
given off by each soil core (in mol CO2/g soil/hr), producing the data below.

Growth 17 20 170 315 22 190 64
Open 24 29 21 13 16 23 18 15 6

(a) Define the rank sum test statistic for testing the null hypothesis of no difference
between two population distributions, based on independent random samples
of sizes n and m, from each population.

(b) Apply the rank sum test to perform an exact test of whether soil respiration
differs between the two locations.

(c) Repeat the test performed in (b) using an appropriate large sample approxi-
mation to the null distribution of the nonparametric test statistic. Comment
on the validity of this approximation for these data.

6. Suppose that the lengths in millimetres of metal fibres produced by a certain process
have a normal distribution for which the mean and variance are both unknown.
Suppose that the lengths of 7 fibres selected at random are measured and are

1267, 1262, 1267, 1263, 1258, 1263, 1268

(a) For this sample, find the approximate probability that the sample variance is
at least twice the value of the population variance.

(b) Derive a general expression for a 100(1− α)% confidence interval for the pop-
ulation variance.

(c) Find a 95% confidence interval for the population variance.

(d) Calculate a 95% confidence interval for the population mean.
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SECTION B

7. A certain quantity x can be measured for each member of a population of size N .
The values of x in the population are x1, . . . , xN . A random sample Y1, . . . , Yn, of
size n, is selected without replacement from the population.

(a) Define the population mean, µ, and the population variance σ2.

(b) Show that the expected value of the sample variance, s2 is given by

E(s2) =
N

N − 1
σ2

Hence derive an unbiased estimator, s2
Y

, for σ2
Y

, the variance of the sample

mean, Y .

(You may quote, without proof, the value of σ2
Y

.)

(c) In the special case of binary values, where each xi is zero or one, denote by p
the proportion of the population for which x = 1 and by p̂ the proportion of
the sample for which x = 1. State the corresponding versions, σ2

p̂ of σ2
Y

and s2
p̂

of s2
Y

as functions of p and of p̂ respectively.

(d) In a particular population, of size N = 8, the value of x for five individuals is
one, and for the remaining three individuals the value is zero. A sample of size
2 is taken, without replacement. Evaluate the sampling distribution of p̂ and
of s2

p̂. Hence evaluate directly the variance of p̂ and the mean of s2
p̂. Confirm

that these answers agree with the general results stated in part (c).

8. A particular random quantity, X, can take three possible values, namely 1, 2, 3.

The probability that X takes value i is pi, i = 1, 2, 3.

An independent random sample, of size n, is taken from the distribution of X. The
number of members of the sample for which X = i is xi, i = 1, 2, 3.

(a) Suppose that p1 = p2 = p, p3 = 1−2p. Find the maximum likelihood estimator
p̂ for p.

(b) Find the expectation and variance of p̂.

(c) Find Fisher’s information for p.

State the general relationship between Fisher’s information and the large sam-
ple properties of the maximum likelihood estimator. Explain how to use
Fisher’s information to construct an approximate large sample 95% confidence
interval for p.

(d) Comparing the approximate assessment of the properties of p̂ based on the
calculations in part (c) with the precise calculation in part (b), explain care-
fully what the above analysis tells you about the optimality of the maximum
likelihood estimator for this problem.

(e) Suppose that we wish to test the null hypothesis that p1 = p2 = p against
the alternative hypothesis that p1 6= p2. Find the generalised likelihood ratio
test statistic for this problem. Explain how to determine critical values for the
statistic for large n.
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9. (a) A common observation in ecology is that species diversity decreases as the
latitude of the location (i.e. the distance from the equator) increases. To
investigate this further, a series of counts of unique bird species were conducted,
each within in a 15-mile diameter area centred on 17 different locations at
different latitudes. The counts were all conducted on the same day in 2005 in
eastern coastal states of the USA. The data obtained were as follows:

Latitude, x 39.22 38.80 39.47 38.96 38.60 38.58 39.73 38.03 38.90
Count, y 128 137 108 118 135 94 113 118 96

Latitude, x 39.53 39.13 38.32 38.33 38.37 37.20 37.97 37.67
Count, y 98 121 152 108 118 157 125 114

The following summary statistics were calculated for these values: x̄ = 38.63588,
ȳ = 120,

∑17
i=1 x

2
i = 25383.99,

∑17
i=1 y

2
i = 249918, and

∑17
i=1 xiyi = 78726.39.

i. Calculate the least-squares regression line. Find and interpret theR2 value,
and assess the quality of the regression.

ii. Use the regression line to obtain a 95% prediction interval for the species
count in Durham, which has a latitude 54.775. Comment on the validity
and reliability of your prediction.

(b) Weighted linear regression is a variation of the simple linear regression model

yi = γ0 + γ1xi + εi

where the errors εi have mean 0 and are independent, but Var(εi) = σ2/wi,
where the wi > 0 are known constant weights for each i = 1, . . . , n.

i. Explain why it would be inappropriate to apply the standard least-squares
approach to simple linear regression in this problem.

ii. The regression relationship for each yi is transformed by multiplication by√
wi to give: √

wiyi = γ0

√
wi + γ1

√
wixi +

√
wiεi

Verify that this new formulation of model satisfies the standard assump-
tions of simple linear regression.

iii. Apply the method of least squares to the model in part (b)(ii) to find
expressions for the least-squares estimates γ̂0 and γ̂1 of γ0 and γ1.

iv. Consider the special case where wi = 1 for all i = 1, . . . , n. Give expres-
sions for γ̂0 and γ̂1 in this case, and comment on your results.
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10. Suppose that we have an independent sample of n observations, x1, . . . , xn, from
a normal distribution, with unknown mean w and known precision r > 0 (so that
the variance is σ2 = 1/r). Let the prior distribution for w be a normal distribution
with mean µ and precision s > 0. The probability density function of the normal
distribution with mean w and precision r > 0 is, for real-valued x,

f(x) =

√
r

2π
e−

r
2
(x−w)2

(a) Show that this family of prior distributions is conjugate for sampling from a
normal distribution with known precision, and that the corresponding posterior
distribution for w is normal with mean µ1 and precision s1, where, if x̄ =
1
n

∑n
i=1 xi,

µ1 =
sµ+ nrx̄

s+ nr
, s1 = s+ nr

You may use, without proof, the following result

n∑
i=1

(xi − a)2 =
n∑
i=1

(xi − x̄)2 + n(x̄− a)2.

(b) In a study of the calorie content of various foods, Allison et al (1993) sampled 20
food items and calculated the difference between the advertised calorie contents
on the packaging label to the calorie content determined in a laboratory test.

Suppose that the differences in calorie counts (laboratory calories − advertised
calories) can be considered to be a random sample from a normal distribution
with an unknown mean value w and variance 10. Suppose that prior beliefs
about w are represented by a normal distribution with mean 0 and variance 2.
If the average difference in calorie counts for the collection of 20 food items is
−0.95, derive the corresponding central 95% posterior credible interval for w.

(c) i. Consider what happens to the posterior distribution in the problem of part
(a) for large sample sizes, by evaluating what happens to the posterior
parameters when n becomes very large.

ii. State the form of the limiting posterior distribution for the parameter of a
general likelihood as the sample size increases. Find the limiting posterior
form for sampling from the normal distribution with known precision, using
this result. (You may assume, without proof, that the sample mean is the
maximum likelihood estimate for w for normal samples.)

iii. Compare the limiting forms derived in (c)(i) and (c)(ii).
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Probabilities for the standard normal distribution

Table entry for z is the probability
lying to the left of z, i.e. �(z).

For z > 3,

1� �(z) ⇡ 1p
2⇡z

e�
1
2 z

2

is accurate to within 10% of the true
value.

z

Probability

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998



Probabilities for the t-distribution

Table entry for p and C is the point t?

with probability p lying above it and
probability C lying between �t? and
t?

t?

Probability p

Tail probability p
df .25 .2 .15 .1 .05 .025 .02 .01 .005 .0025 .001 .0005
1 1.000 1.376 1.963 3.078 6.314 12.706 15.895 31.821 63.657 127.321 318.309 636.619
2 0.816 1.061 1.386 1.886 2.920 4.303 4.849 6.965 9.925 14.089 22.327 31.599
3 0.765 0.978 1.250 1.638 2.353 3.182 3.482 4.541 5.841 7.453 10.215 12.924
4 0.741 0.941 1.190 1.533 2.132 2.776 2.999 3.747 4.604 5.598 7.173 8.610
5 0.727 0.920 1.156 1.476 2.015 2.571 2.757 3.365 4.032 4.773 5.893 6.869
6 0.718 0.906 1.134 1.440 1.943 2.447 2.612 3.143 3.707 4.317 5.208 5.959
7 0.711 0.896 1.119 1.415 1.895 2.365 2.517 2.998 3.499 4.029 4.785 5.408
8 0.706 0.889 1.108 1.397 1.860 2.306 2.449 2.896 3.355 3.833 4.501 5.041
9 0.703 0.883 1.100 1.383 1.833 2.262 2.398 2.821 3.250 3.690 4.297 4.781

10 0.700 0.879 1.093 1.372 1.812 2.228 2.359 2.764 3.169 3.581 4.144 4.587
11 0.697 0.876 1.088 1.363 1.796 2.201 2.328 2.718 3.106 3.497 4.025 4.437
12 0.695 0.873 1.083 1.356 1.782 2.179 2.303 2.681 3.055 3.428 3.930 4.318
13 0.694 0.870 1.079 1.350 1.771 2.160 2.282 2.650 3.012 3.372 3.852 4.221
14 0.692 0.868 1.076 1.345 1.761 2.145 2.264 2.624 2.977 3.326 3.787 4.140
15 0.691 0.866 1.074 1.341 1.753 2.131 2.249 2.602 2.947 3.286 3.733 4.073
16 0.690 0.865 1.071 1.337 1.746 2.120 2.235 2.583 2.921 3.252 3.686 4.015
17 0.689 0.863 1.069 1.333 1.740 2.110 2.224 2.567 2.898 3.222 3.646 3.965
18 0.688 0.862 1.067 1.330 1.734 2.101 2.214 2.552 2.878 3.197 3.610 3.922
19 0.688 0.861 1.066 1.328 1.729 2.093 2.205 2.539 2.861 3.174 3.579 3.883
20 0.687 0.860 1.064 1.325 1.725 2.086 2.197 2.528 2.845 3.153 3.552 3.850
21 0.686 0.859 1.063 1.323 1.721 2.080 2.189 2.518 2.831 3.135 3.527 3.819
22 0.686 0.858 1.061 1.321 1.717 2.074 2.183 2.508 2.819 3.119 3.505 3.792
23 0.685 0.858 1.060 1.319 1.714 2.069 2.177 2.500 2.807 3.104 3.485 3.768
24 0.685 0.857 1.059 1.318 1.711 2.064 2.172 2.492 2.797 3.091 3.467 3.745
25 0.684 0.856 1.058 1.316 1.708 2.060 2.167 2.485 2.787 3.078 3.450 3.725
26 0.684 0.856 1.058 1.315 1.706 2.056 2.162 2.479 2.779 3.067 3.435 3.707
27 0.684 0.855 1.057 1.314 1.703 2.052 2.158 2.473 2.771 3.057 3.421 3.690
28 0.683 0.855 1.056 1.313 1.701 2.048 2.154 2.467 2.763 3.047 3.408 3.674
29 0.683 0.854 1.055 1.311 1.699 2.045 2.150 2.462 2.756 3.038 3.396 3.659
30 0.683 0.854 1.055 1.310 1.697 2.042 2.147 2.457 2.750 3.030 3.385 3.646
40 0.681 0.851 1.050 1.303 1.684 2.021 2.123 2.423 2.704 2.971 3.307 3.551
50 0.679 0.849 1.047 1.299 1.676 2.009 2.109 2.403 2.678 2.937 3.261 3.496
60 0.679 0.848 1.045 1.296 1.671 2.000 2.099 2.390 2.660 2.915 3.232 3.460
80 0.678 0.846 1.043 1.292 1.664 1.990 2.088 2.374 2.639 2.887 3.195 3.416

100 0.677 0.845 1.042 1.290 1.660 1.984 2.081 2.364 2.626 2.871 3.174 3.390
1000 0.675 0.842 1.037 1.282 1.646 1.962 2.056 2.330 2.581 2.813 3.098 3.300
1 0.674 0.842 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.090 3.291

50% 60% 70 % 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9%
Confidence level C



Probabilities for the �2-distribution

Table entry for p is the point (X2)?

with probability p lying above it

(X2)?

Probability p

Tail probability p
df .995 .975 .25 .2 .1 .05 .025 .01 .005 .0025 .001 .0005
1 0.000039 0.00098 1.32 1.64 2.71 3.84 5.02 6.63 7.88 9.14 10.83 12.12
2 0.010 0.051 2.77 3.22 4.61 5.99 7.38 9.21 10.60 11.98 13.82 15.20
3 0.072 0.22 4.11 4.64 6.25 7.81 9.35 11.34 12.84 14.32 16.27 17.73
4 0.21 0.48 5.39 5.99 7.78 9.49 11.14 13.28 14.86 16.42 18.47 20.00
5 0.41 0.83 6.63 7.29 9.24 11.07 12.83 15.09 16.75 18.39 20.52 22.11
6 0.68 1.24 7.84 8.56 10.64 12.59 14.45 16.81 18.55 20.25 22.46 24.10
7 0.99 1.69 9.04 9.80 12.02 14.07 16.01 18.48 20.28 22.04 24.32 26.02
8 1.34 2.18 10.22 11.03 13.36 15.51 17.53 20.09 21.95 23.77 26.12 27.87
9 1.73 2.70 11.39 12.24 14.68 16.92 19.02 21.67 23.59 25.46 27.88 29.67

10 2.16 3.25 12.55 13.44 15.99 18.31 20.48 23.21 25.19 27.11 29.59 31.42
11 2.60 3.82 13.70 14.63 17.28 19.68 21.92 24.72 26.76 28.73 31.26 33.14
12 3.07 4.40 14.85 15.81 18.55 21.03 23.34 26.22 28.30 30.32 32.91 34.82
13 3.57 5.01 15.98 16.98 19.81 22.36 24.74 27.69 29.82 31.88 34.53 36.48
14 4.07 5.63 17.12 18.15 21.06 23.68 26.12 29.14 31.32 33.43 36.12 38.11
15 4.60 6.26 18.25 19.31 22.31 25.00 27.49 30.58 32.80 34.95 37.70 39.72
16 5.14 6.91 19.37 20.47 23.54 26.30 28.85 32.00 34.27 36.46 39.25 41.31
17 5.70 7.56 20.49 21.61 24.77 27.59 30.19 33.41 35.72 37.95 40.79 42.88
18 6.26 8.23 21.60 22.76 25.99 28.87 31.53 34.81 37.16 39.42 42.31 44.43
19 6.84 8.91 22.72 23.90 27.20 30.14 32.85 36.19 38.58 40.88 43.82 45.97
20 7.43 9.59 23.83 25.04 28.41 31.41 34.17 37.57 40.00 42.34 45.31 47.50
21 8.03 10.28 24.93 26.17 29.62 32.67 35.48 38.93 41.40 43.78 46.80 49.01
22 8.64 10.98 26.04 27.30 30.81 33.92 36.78 40.29 42.80 45.20 48.27 50.51
23 9.26 11.69 27.14 28.43 32.01 35.17 38.08 41.64 44.18 46.62 49.73 52.00
24 9.89 12.40 28.24 29.55 33.20 36.42 39.36 42.98 45.56 48.03 51.18 53.48
25 10.52 13.12 29.34 30.68 34.38 37.65 40.65 44.31 46.93 49.44 52.62 54.95
26 11.16 13.84 30.43 31.79 35.56 38.89 41.92 45.64 48.29 50.83 54.05 56.41
27 11.81 14.57 31.53 32.91 36.74 40.11 43.19 46.96 49.64 52.22 55.48 57.86
28 12.46 15.31 32.62 34.03 37.92 41.34 44.46 48.28 50.99 53.59 56.89 59.30
29 13.12 16.05 33.71 35.14 39.09 42.56 45.72 49.59 52.34 54.97 58.30 60.73
30 13.79 16.79 34.80 36.25 40.26 43.77 46.98 50.89 53.67 56.33 59.70 62.16
40 20.71 24.43 45.62 47.27 51.81 55.76 59.34 63.69 66.77 69.70 73.40 76.09
50 27.99 32.36 56.33 58.16 63.17 67.50 71.42 76.15 79.49 82.66 86.66 89.56
60 35.53 40.48 66.98 68.97 74.40 79.08 83.30 88.38 91.95 95.34 99.61 102.69
80 51.17 57.15 88.13 90.41 96.58 101.88 106.63 112.33 116.32 120.10 124.84 128.26

100 67.33 74.22 109.14 111.67 118.50 124.34 129.56 135.81 140.17 144.29 149.45 153.17



Values for the Mann-Whitney-Wilcoxon Test

Reject the hypothesis of identical populations if the test statistic is less than the value TL shown
in the following table or greater than the value TU where

TU = n1(n1 + n2 + 1)� TL

n2

↵  .01 2 3 4 5 6 7 8 9 10
2 – – – – – – – – –
3 – – – – – – – 7 7
4 – – – – 11 11 12 12 13
5 – – – 16 17 17 18 19 20

n1 6 – – 22 23 24 25 26 27 28
7 – – 29 30 32 33 35 36 38
8 – – 38 39 41 43 44 46 48
9 – 46 47 49 51 53 55 57 59

10 – 56 58 60 62 65 67 69 72

n2

↵  .05 2 3 4 5 6 7 8 9 10
2 – – – – – – 4 4 4
3 – – – 7 8 8 9 9 10
4 – – 11 12 13 14 15 15 16
5 – 16 17 18 19 21 22 23 24

n1 6 – 23 24 25 27 28 30 32 33
7 – 30 32 34 35 37 39 41 43
8 37 39 41 43 45 47 50 52 54
9 46 48 50 53 56 58 61 63 66

10 56 59 61 64 67 70 73 76 79

n2

↵  .10 2 3 4 5 6 7 8 9 10
2 – – – 4 4 4 5 5 5
3 – 7 7 8 9 9 10 11 11
4 – 11 12 13 14 15 16 17 18
5 16 17 18 20 21 22 24 25 27

n1 6 22 24 25 27 29 30 32 34 36
7 29 31 33 35 37 40 42 44 46
8 38 40 42 45 47 50 52 55 57
9 47 50 52 55 58 61 64 67 70

10 57 60 63 67 70 73 76 80 83



Values for the Wilcoxon signed-rank Test

Reject the hypothesis of identical populations if the test statistic is less than the value T shown
in the following table.

Sample size Level of significance for a two-tailed test

n 10% 5% 2% 1%
5 1 – – –
6 3 1 – –
7 4 3 1 –
8 6 4 2 1
9 9 6 4 2

10 11 9 6 4
11 14 11 8 6
12 18 14 10 8
13 22 18 13 10
14 26 22 16 13
15 31 26 20 16
16 36 30 24 20
17 42 35 28 24
18 48 41 33 28
19 54 47 38 33
20 61 53 44 38
21 68 59 50 43
22 76 66 56 49
23 84 74 63 55
24 92 82 70 62
25 101 90 77 69
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