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SECTION A

1. A particle of unit mass moves in a two-dimensional plane parametrised by the Carte-
sian coordinates (x,y) without friction.

(a) Find the kinetic energy of the system in terms of the polar coordinates (r,6),
defined via x = rcos(f), y = rsin(6).

(b) Assuming that there is a rotationally symmetric potential V' (r) = %, write the
Lagrangian for the system in polar coordinates, and derive the Euler-Lagrange
equations of motion associated to these polar coordinates. (You do not need
to solve them.)

(c) Which coordinate is ignorable? Write the associated generalised momentum
J, and show that it is conserved.

(d) Find an equation of motion for r only (without 6 or 6 appearing anywhere) in
terms of the conserved charge J.

2. The energy for a system with Lagrangian L(qi,...,qn, q1, .- ., dn,t) is defined to be

" 0L
E= <;q"aqi) —L.

(a) Show, using the Euler-Lagrange equations of motion, that

dE 9L
dat ot

(b) Show that the replacement
L—L =L+ f(t

with f an arbitrary function of one variable, does not change the equations of
motion for the system.

(c) Compute the energy associated to the Lagrangian
1,5 .
L = 5(d1 +d3) = cos(q + @)

(d) Show that the transformation

G — q1T€

G2 — g2 — €

with € constant, is a symmetry of the Lagrangian given above.
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3. Two beads of unit mass move along a straight horizontal wire, without friction, with
positions z; and x5 (we will assume z5 > x1). They are joined by a spring of natural
length a and constant k = 1.

(a) Introduce the generalised coordinates ¢; = 1 and g3 = x5 — a. Show that the
Lagrangian describing the system in these coordinates is

1 ., o 1
L= 5((1? +43) — 5@~ ¢)?.

(b) Write the Euler-Lagrange equations of motion for ¢; and ¢, coming from this
Lagrangian.

(¢) Find the normal modes of the system, including possible zero modes, and write
the general solution ¢;(¢) and ¢y(t) for the motion of the system in terms of
these normal modes.

(d) Assume that the system starts at rest, with ¢o = —¢; = d > 0. Find the
subsequent motion of the system, that is, give explicit expressions for ¢;(¢) and
¢2(t) compatible with the given initial conditions.

4. Suppose that ¢;(z) form an orthonormal basis of Hamiltonian eigenfunctions with
distinct eigenvalues E;.

(a) A particle has normalised wavefunction v (z). Using the inner product (,-),
write down an expression for the probability P; to measure energy £ .
(b) Show that the wavefunction

V() =) cio5(x)

J

is correctly normalised if and only if 37 [e;|* = 1.
(c) Find the probabilities P; in terms of the ¢; and show that >, P; = 1.
(d) Now suppose that

() = C(dr(x) + 202(x) + 3¢3()) -

Find the normalisation C' and probabilities Py, Ps, Ps.

(e) Suppose a measurement of energy yields the result ;. What is the wavefunc-
tion immediately after the measurement?
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5. Consider a particle of mass m in a potential V'(x).

(a) What is Schrodinger’s equation for the wavefunction ¢ (x,t)?

(b) Write down an expression for the probability density P(x,t) and show that
O P(x,t) = =0, J(x, 1)

where you should determine J(z,t).
(c) Write down a definite integral for the probability P,,(¢) to find the particle in
the region a < z < b and show that

d
S Pu(t) = J(a,t) = J(b,1).

What is the physical interpretation of this result?

6. A particle confined to > 0 has wavefunction
U(z) = Cre
where a > 0 is a constant.

(a) Determine the normalisation C'.
(b) Sketch the probability density. Where is the particle most likely to be found?

(c) Show that ¢(z) is a Hamiltonian eigenfunction for a particle of mass m in a

potential of the form

V(z) = —% .

Determine the constant A and the energy eigenvalue.
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SECTION B

7. We describe small oscillations of an infinite one-dimensional string by a one-dimensional
field u(x,t) with Lagrangian density

where u, = 0u/dz and u; = Ju/0t.

(a) Derive the wave equation describing the dynamics of the string.

(b) State D’Alembert’s general solution of the wave equation you just found, and
show that it is indeed a solution.

(c) We deform the string into a Gaussian shape at t = 0, and release it from rest,

namely
u(z,0) = e and ur(z,0) =0.

Find the solution for the motion of the string compatible with these initial
conditions.

(d) Define the energy contained on an interval a < z < b to be

’ Lo 1,
E(a,b) = | dx §ut+§ux :

Show, using the wave equation you found above, that

dE(a,b)  [0udu]’
dt Ox Ot

a
(e) Assume that we attach a mass m to the string, fixed at x = 0, so that there
is an extra finite contribution to the kinetic energy of the string coming from

the mass at x = 0. (As above, we ignore the effect of gravity.) Taking a
monochromatic wave ansatz of the form

w(a 1) = R ((e“” + Re~™")e~ ') for x <0
| R(Tewreien) for x > 0

where R(f) denotes taking the real part of f, solve for R and 7" in the presence
of the mass. [Hint: use energy conservation at x = 0.]
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8. Consider an infinitesimal transformation of the generalised coordinates of the form

Qi—>q7€ZQ¢+eai(Q1;-~;Qn) ; qz‘—%ig:q'i—i-edi(%w--’%)

where we have dropped possible terms of quadratic and higher order in the infinites-
imal parameter €.

(a) Show, using the Euler-Lagrange equations, that under such a transformation
the change in the Lagrangian

6L:L/_L:L(qa77Q;L7QE77q;L>_L(q177Q7MQI77QTZ)

is given by

dQ ,
5L = e—%
e +OE)

for some @ that you should find explicitly. In the special case L = O(e?) the
transformation is a symmetry, and the () that you found is a conserved charge.

(b) Consider a Lagrangian of the form
L. .
Lap = 5(d1 + d2) — g — b; -

Find the relation that needs to be satisfied between a¢ and b so that the in-

finitesimal rotation
qz d; € 1 q2

(¢) Denote by L, the Lagrangian with a arbitrary, but b chosen so that the rotation
above is a symmetry. Compute the conserved charge () associated to the
rotation of L.

is a symmetry of L.

(d) Compute the generalised momenta p; for the Lagrangian L, and check that
the variation of ¢; under the transformation generated by (), obtained by com-
puting the relevant Poisson bracket, agrees with the transformation you started
with.

(e) Write down the expression for the Hamiltonian H,, in terms of ¢; and p;. Then
show, by computing the Poisson bracket @ = {Q, Hy}, that @ is conserved if
and only if the relation you found between a and b above holds.
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9. Consider a particle of mass m in the semi-infinite potential well

00 r <0
Vo x> L
where 0 < V) < 0.
Vo
0
0 L

(a) Explain why the wavefunction should vanish for < 0. Find constants & > 0
and £ > 0 in terms of F, V, A and m such that

Acos(kx) + Bsin(kx 0<zx<L
sy e
e x> L

is a Hamiltonian eigenfunction with energy 0 < FE < V4.
(b) What are the boundary conditions at x = 0 and z = L?

(¢) Thus determine A and eliminate B and C' to derive the quantization condition

—cot(z) =/22/22 — 1,

z=kL 20 =Vk?+ k2L

are dimensionless parameters.

where

(d) Ilustrate the solutions of the quantisation condition by sketching the functions
—cot(z) and /z3/22 — 1 on the same graph.

(e) Hence show that in the limit Vj — oo there are an infinite number of solutions

with energies
h? /nm\2
B, = (—) . ne€Zs.
om \'L e ae

ED01/2019 CONTINUED
University of Durham Copyright



I 1 Me, . . - - - --T=======-=-- A
, Page number , Exam code

1 8of8 l l MATH2071-WEO1 1

10. The Hamiltonian operator of a simple harmonic oscillator with mass m and angular
frequency w is

Flzhw(aTa+%) :

where
4 = ———=(mw +1p) .
Gl p)
(a) Using the canonical commutator [Z,p] = ih, show that [a,a’] = 1 and hence

prove by induction that

(b) The ground state wavefunction is defined by a ¢o(x) = 0. Show that

1 n
On(T) = ﬁw )" o ()

are Hamiltonian eigenfunctions for all n > 0 and determine their energies.
(c) Now write down expressions for a and a' as differential operators.
(d) Show that the ground state wavefunction has the form

2

¢o(x) = Ce™ "

and determine the constant a and normalisation C'. Hence compute the first
excited wavefunction ¢ (x).

(e) Sketch both of the wavefunctions ¢o(x), ¢1(z).

(f) Now consider the “half” simple harmonic oscillator with potential

V(x):{oo z <0

%mw%g x>0.

Write down the boundary condition at x = 0 and explain why

0 if <0
M”T):{qsl(x) it >0

is a Hamiltonian eigenfunction in this potential.

[e.9]

You may use without proof the definite integml/ eV = V.

—00
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