

EXAMINATION PAPER

Exam Code:

Year:

May	2	2019		MATH2071-WE01		
Title: Mathematical Physics II						
Time Allowed:	3 hours					
		None				
Additional Material provi	ided. None	Notice				
Materials Permitted:	None	None				
Calculators Permitted:	No		Models Permitted: Use of electronic calculators is forbidden.			
Visiting Students may use dictionaries: No						
Instructions to Candidat	the best and the Questio	Credit will be given for: the best FOUR answers from Section A and the best THREE answers from Section B. Questions in Section B carry TWICE as many marks as those in Section A. Revision:				

Examination Session:

May

SECTION A

- 1. A particle of unit mass moves in a two-dimensional plane parametrised by the Cartesian coordinates (x, y) without friction.
 - (a) Find the kinetic energy of the system in terms of the polar coordinates (r, θ) , defined via $x = r \cos(\theta)$, $y = r \sin(\theta)$.
 - (b) Assuming that there is a rotationally symmetric potential $V(r) = \frac{r^6}{6}$, write the Lagrangian for the system in polar coordinates, and derive the Euler-Lagrange equations of motion associated to these polar coordinates. (You do not need to solve them.)
 - (c) Which coordinate is ignorable? Write the associated generalised momentum J, and show that it is conserved.
 - (d) Find an equation of motion for r only (without θ or $\dot{\theta}$ appearing anywhere) in terms of the conserved charge J.
- 2. The energy for a system with Lagrangian $L(q_1,\ldots,q_n,\dot{q}_1,\ldots,\dot{q}_n,t)$ is defined to be

$$E = \left(\sum_{i=1}^{n} \dot{q}_{i} \frac{\partial L}{\partial \dot{q}_{i}}\right) - L.$$

(a) Show, using the Euler-Lagrange equations of motion, that

$$\frac{dE}{dt} = -\frac{\partial L}{\partial t} \,.$$

(b) Show that the replacement

$$L \to L' = L + f(t)$$

with f an arbitrary function of one variable, does not change the equations of motion for the system.

(c) Compute the energy associated to the Lagrangian

$$L = \frac{1}{2}(\dot{q}_1^2 + \dot{q}_2^2) - \cos(q_1 + q_2).$$

(d) Show that the transformation

$$q_1 \to q_1 + \epsilon$$

$$q_2 \to q_2 - \epsilon$$

with ϵ constant, is a symmetry of the Lagrangian given above.

- 3. Two beads of unit mass move along a straight horizontal wire, without friction, with positions x_1 and x_2 (we will assume $x_2 > x_1$). They are joined by a spring of natural length a and constant $\kappa = 1$.
 - (a) Introduce the generalised coordinates $q_1 = x_1$ and $q_2 = x_2 a$. Show that the Lagrangian describing the system in these coordinates is

$$L = \frac{1}{2}(\dot{q}_1^2 + \dot{q}_2^2) - \frac{1}{2}(q_2 - q_1)^2.$$

- (b) Write the Euler-Lagrange equations of motion for q_1 and q_2 coming from this Lagrangian.
- (c) Find the normal modes of the system, including possible zero modes, and write the general solution $q_1(t)$ and $q_2(t)$ for the motion of the system in terms of these normal modes.
- (d) Assume that the system starts at rest, with $q_2 = -q_1 = d > 0$. Find the subsequent motion of the system, that is, give explicit expressions for $q_1(t)$ and $q_2(t)$ compatible with the given initial conditions.
- 4. Suppose that $\phi_j(x)$ form an orthonormal basis of Hamiltonian eigenfunctions with distinct eigenvalues E_j .
 - (a) A particle has normalised wavefunction $\psi(x)$. Using the inner product $\langle \cdot, \cdot \rangle$, write down an expression for the probability P_j to measure energy E_j .
 - (b) Show that the wavefunction

$$\psi(x) = \sum_{j} c_j \, \phi_j(x)$$

is correctly normalised if and only if $\sum_{j} |c_{j}|^{2} = 1$.

- (c) Find the probabilities P_j in terms of the c_j and show that $\sum_j P_j = 1$.
- (d) Now suppose that

$$\psi(x) = C \left(\phi_1(x) + 2\phi_2(x) + 3\phi_3(x) \right) .$$

Find the normalisation C and probabilities P_1 , P_2 , P_3 .

(e) Suppose a measurement of energy yields the result E_1 . What is the wavefunction immediately after the measurement?

- 5. Consider a particle of mass m in a potential V(x).
 - (a) What is Schrödinger's equation for the wavefunction $\psi(x,t)$?
 - (b) Write down an expression for the probability density P(x,t) and show that

$$\partial_t P(x,t) = -\partial_x J(x,t)$$

where you should determine J(x,t).

(c) Write down a definite integral for the probability $P_{ab}(t)$ to find the particle in the region a < x < b and show that

$$\frac{d}{dt}P_{ab}(t) = J(a,t) - J(b,t).$$

What is the physical interpretation of this result?

6. A particle confined to x > 0 has wavefunction

$$\psi(x) = Cxe^{-x/a}$$

where a > 0 is a constant.

- (a) Determine the normalisation C.
- (b) Sketch the probability density. Where is the particle most likely to be found?
- (c) Show that $\psi(x)$ is a Hamiltonian eigenfunction for a particle of mass m in a potential of the form

$$V(x) = -\frac{A}{x}.$$

Determine the constant A and the energy eigenvalue.

SECTION B

7. We describe small oscillations of an infinite one-dimensional string by a one-dimensional field u(x,t) with Lagrangian density

$$\mathcal{L} = \frac{1}{2}u_t^2 - \frac{1}{2}u_x^2$$

where $u_x \equiv \partial u/\partial x$ and $u_t \equiv \partial u/\partial t$.

- (a) Derive the wave equation describing the dynamics of the string.
- (b) State D'Alembert's general solution of the wave equation you just found, and show that it is indeed a solution.
- (c) We deform the string into a Gaussian shape at t=0, and release it from rest, namely

$$u(x,0) = e^{-x^2}$$
 and $u_t(x,0) = 0$.

Find the solution for the motion of the string compatible with these initial conditions.

(d) Define the energy contained on an interval $a \leq x \leq b$ to be

$$E(a,b) = \int_a^b dx \, \left(\frac{1}{2} u_t^2 + \frac{1}{2} u_x^2 \right) \, .$$

Show, using the wave equation you found above, that

$$\frac{dE(a,b)}{dt} = \left[\frac{\partial u}{\partial x}\frac{\partial u}{\partial t}\right]_a^b.$$

(e) Assume that we attach a mass m to the string, fixed at x = 0, so that there is an extra finite contribution to the kinetic energy of the string coming from the mass at x = 0. (As above, we ignore the effect of gravity.) Taking a monochromatic wave ansatz of the form

$$u(x,t) = \begin{cases} \Re\left((e^{i\omega x} + Re^{-i\omega x})e^{-i\omega t}\right) & \text{for } x < 0\\ \Re\left(Te^{i\omega x}e^{-i\omega t}\right) & \text{for } x > 0 \end{cases}$$

where $\Re(f)$ denotes taking the real part of f, solve for R and T in the presence of the mass. [Hint: use energy conservation at x = 0.]

8. Consider an infinitesimal transformation of the generalised coordinates of the form

$$q_i \rightarrow q_i' = q_i + \epsilon a_i(q_1, \dots, q_n)$$
 ; $\dot{q}_i \rightarrow \dot{q}_i' = \dot{q}_i + \epsilon \dot{a}_i(q_1, \dots, q_n)$

where we have dropped possible terms of quadratic and higher order in the infinitesimal parameter ϵ .

(a) Show, using the Euler-Lagrange equations, that under such a transformation the change in the Lagrangian

$$\delta L = L' - L = L(q'_1, \dots, q'_n, \dot{q}'_1, \dots, \dot{q}'_n) - L(q_1, \dots, q_n, \dot{q}_1, \dots, \dot{q}_n)$$

is given by

$$\delta L = \epsilon \frac{dQ}{dt} + O(\epsilon^2)$$

for some Q that you should find explicitly. In the special case $\delta L = O(\epsilon^2)$ the transformation is a symmetry, and the Q that you found is a conserved charge.

(b) Consider a Lagrangian of the form

$$L_{ab} = \frac{1}{2}(\dot{q}_1^2 + \dot{q}_2^2) - aq_1^2 - bq_2^2.$$

Find the relation that needs to be satisfied between a and b so that the infinitesimal rotation

$$\begin{pmatrix} q_1 \\ q_2 \end{pmatrix} \to \begin{pmatrix} q_1' \\ q_2' \end{pmatrix} = \begin{pmatrix} 1 & \epsilon \\ -\epsilon & 1 \end{pmatrix} \begin{pmatrix} q_1 \\ q_2 \end{pmatrix}$$

is a symmetry of L_{ab} .

- (c) Denote by L_a the Lagrangian with a arbitrary, but b chosen so that the rotation above is a symmetry. Compute the conserved charge Q associated to the rotation of L_a .
- (d) Compute the generalised momenta p_i for the Lagrangian L_{ab} , and check that the variation of q_i under the transformation generated by Q, obtained by computing the relevant Poisson bracket, agrees with the transformation you started with.
- (e) Write down the expression for the Hamiltonian H_{ab} in terms of q_i and p_i . Then show, by computing the Poisson bracket $\dot{Q} = \{Q, H_{ab}\}$, that Q is conserved if and only if the relation you found between a and b above holds.

9. Consider a particle of mass m in the semi-infinite potential well

$$V(x) = \begin{cases} \infty & x < 0 \\ 0 & 0 \le x \le L \\ V_0 & x > L \end{cases},$$

where $0 < V_0 < \infty$.

(a) Explain why the wavefunction should vanish for x < 0. Find constants k > 0 and $\kappa > 0$ in terms of E, V_0, \hbar and m such that

$$\psi(x) = \begin{cases} A\cos(kx) + B\sin(kx) & 0 \le x \le L \\ Ce^{-\kappa x} & x > L \end{cases}$$

is a Hamiltonian eigenfunction with energy $0 < E < V_0$

- (b) What are the boundary conditions at x = 0 and x = L?
- (c) Thus determine A and eliminate B and C to derive the quantization condition

$$-\cot(z) = \sqrt{z_0^2/z^2 - 1},$$

where

$$z = kL \qquad z_0 = \sqrt{k^2 + \kappa^2} \, L$$

are dimensionless parameters.

- (d) Illustrate the solutions of the quantisation condition by sketching the functions $-\cot(z)$ and $\sqrt{z_0^2/z^2-1}$ on the same graph.
- (e) Hence show that in the limit $V_0 \to \infty$ there are an infinite number of solutions with energies

$$E_n = \frac{\hbar^2}{2m} \left(\frac{n\pi}{L}\right)^2 , \quad n \in \mathbb{Z}_{>0}.$$

10. The Hamiltonian operator of a simple harmonic oscillator with mass m and angular frequency ω is

$$\hat{H} = \hbar\omega \left(a^{\dagger} a + \frac{1}{2} \right) \,,$$

where

$$a = \frac{1}{\sqrt{2m\hbar\omega}} (m\omega \hat{x} + i\hat{p}) .$$

(a) Using the canonical commutator $[\hat{x}, \hat{p}] = i\hbar$, show that $[a, a^{\dagger}] = 1$ and hence prove by induction that

$$[a, (a^{\dagger})^n] = n(a^{\dagger})^{n-1}, \quad n \ge 1.$$

(b) The ground state wavefunction is defined by $a \phi_0(x) = 0$. Show that

$$\phi_n(x) = \frac{1}{\sqrt{n!}} (a^{\dagger})^n \phi_0(x)$$

are Hamiltonian eigenfunctions for all $n \geq 0$ and determine their energies.

- (c) Now write down expressions for a and a^{\dagger} as differential operators.
- (d) Show that the ground state wavefunction has the form

$$\phi_0(x) = Ce^{-\alpha x^2}$$

and determine the constant α and normalisation C. Hence compute the first excited wavefunction $\phi_1(x)$.

- (e) Sketch both of the wavefunctions $\phi_0(x)$, $\phi_1(x)$.
- (f) Now consider the "half" simple harmonic oscillator with potential

$$V(x) = \begin{cases} \infty & x < 0 \\ \frac{1}{2}m\omega^2 x^2 & x \ge 0 \end{cases}$$

Write down the boundary condition at x = 0 and explain why

$$\psi(x) = \begin{cases} 0 & \text{if } x < 0\\ \phi_1(x) & \text{if } x \ge 0 \end{cases}$$

is a Hamiltonian eigenfunction in this potential.

You may use without proof the definite integral $\int_{-\infty}^{\infty} e^{-y^2} = \sqrt{\pi}$.