

EXAMINATION PAPER

Examination Session: May

2019

Year:

Exam Code:

MATH2581-WE01

Title:

Algebra II

Time Allowed:	3 hours			
Additional Material provided:	None			
Materials Permitted:	None			
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.		
Visiting Students may use dictionaries: No				

Instructions to Candidates:	Credit will be given for: the best FOUR answers from Section and the best THREE answers from S Questions in Section B carry TWICE in Section A.	n A ection B. as many ma	arks as those
		Development	

Revision:

SECTION A

- 1. (a) Let r be a non-zero element of an integral domain R. Show that the function $f: R \to R$ given by f(x) = rx is injective.
 - (b) Deduce that any finite integral domain is a field.
 - (c) Is the map f from part (a) always a ring homomorphism? If yes, provide a proof, otherwise give a counterexample.
- 2. (a) Define what it means to be a unit in a ring.
 - (b) Show that the set of all units R^{\times} in a ring R forms a group under multiplication.
 - (c) Let $R := \mathbb{Z}[\sqrt{17}] = \{a + b\sqrt{17} \mid a, b \in \mathbb{Z}\}$, a subring of \mathbb{C} . Show that the principal ideal $I = (4 \sqrt{17})$ is the full ring R.
- 3. Factorize the following polynomials into irreducible factors.
 - (a) $f(x) = x^3 x + \overline{4} \in (\mathbb{Z}/7)[x].$
 - (b) $f(x) = x^5 + 2x^4 + 3x^3 + 3x^2 6x 3 \in \mathbb{Q}[x].$
 - (c) $f(x) = x^8 8x^4 + 16 \in \mathbb{Q}[x].$
- 4. (a) State the Burnside lemma for counting the number of orbits of the action of a finite group G on a finite set X.
 - (b) Compute the number of essentially different ways to colour in the faces of a regular tetrahedron red, white and blue.
- 5. Consider the element $\sigma := (13)(5321)(42) \in S_5$.
 - (a) Compute σ^{100} . Justify your computation carefully.
 - (b) How many elements of S_5 are conjugate to σ ?
- 6. For each of the following pairs of groups, are they isomorphic? Prove your assertion, stating your reasons clearly.
 - (a) The direct product $C_3 \times C_3$ of the cyclic group of order 3 with itself and the cyclic group C_9 of order 9.
 - (b) The quaternion group Q_8 and the dihedral group D_8 , both of order 8.
 - (c) The multiplicative groups $\mathbb{R}^{\times} = (\mathbb{R} \setminus \{0\}, \times, 1)$ and $\mathbb{C}^{\times} = (\mathbb{C} \setminus \{0\}, \times, 1)$.

SECTION B

- 7. Let p be a fixed prime number and let $R = \{ \frac{a}{b} \in \mathbb{Q} \mid \gcd(b, p) = 1 \}.$
 - (a) Show that R is an integral domain.
 - (b) Show that the map $\varphi \colon R \to \mathbb{Z}/p^n$ given by $\frac{a}{b} \mapsto \overline{a}\overline{b}^{-1}$ is well-defined (i.e. does not depend on the way to write a/b in R) and that φ is a ring homomorphism.
 - (c) Show that φ is surjective and express the kernel of φ as a principal ideal in R. Give careful reasoning for each step.
 - (d) Express \mathbb{Z}/p^n as a quotient ring of R.
- 8. (a) State and prove Eisenstein's criterion for irreducibility. (*Hint: You may reduce modulo a suitable prime.*)
 - (b) Let $R = \mathbb{Z}[\sqrt{-13}].$
 - i. Considering decompositions of 14 or otherwise, show that 2 is irreducible in R but not prime.
 (Hint: You may use that the norm function N(a + b√-13) = a² + 13b² is multiplicative.)
 - ii. Prove that the principal ideal $(2) \subseteq R$ is not maximal.
- 9. (a) If a finite group G has even order show there exists an element of order two.
 - (b) Let G be a group with $\operatorname{ord}(g) = 2$ for all $g \neq e$. Show that G is abelian. (*Hint: consider ghg*⁻¹h⁻¹.)
 - (c) Let G be an abelian group. Show that $\{g \in G \mid \operatorname{ord}(g) < \infty\}$ is a subgroup.
 - (d) Let H and K be normal subgroups of a finite group G with $H \cap K = \{e\}$ and $|H| \cdot |K| = |G|$. Show that $G \cong H \times K$. (Hint: prove that $(h, k) \mapsto hk$ is a bijective homomorphism from $H \times K$ to G. You may need to show that $hkh^{-1}k^{-1} = e$.)
- 10. You may use Q9 part (d) in this question.
 - (a) State the Sylow theorem.
 - (b) Suppose that m and n are coprime. Prove that $C_n \times C_m \cong C_{nm}$.
 - (c) Prove that every group of order 217 is cyclic. (*Hint: what are the prime factors of 217? Show that G is a direct product of two Sylow subgroups.*)