

EXAMINATION PAPER

Examination Session: May

2019

Year:

Exam Code:

MATH2617-WE01

Title:

Elementary Number Theory II

Time Allowed:	2 hours			
Additional Material provided:	None			
Materials Permitted:	None			
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.		
Visiting Students may use dictionaries: No				

Instructions to Candidates:	Credit will be given for the best TWO and the best TWO answers from Sec Questions in Section B carry ONE an marks as those in Section A.	answers fro etion B. d a HALF tir	m Section A nes as many

Revision:

SECTION A

- 1. (a) Find all $n \in \mathbb{N}$ such that $\varphi(n) = 2$, where φ is the Euler φ -function. (You must justify that you have found all such n.)
 - (b) Find a solution $x \in \mathbb{Z}$, 0 < x < 221 to the system of congruences

$$2x \equiv 5 \pmod{13}, 3x \equiv 7 \pmod{17}.$$

2. (a) Let $m, n \in \mathbb{N}$. Show that

$$\gcd\left(\frac{m}{\gcd(m,n)},\frac{n}{\gcd(m,n)}\right)=1.$$

(b) Let $a, b, n \in \mathbb{N}$ and let d be a common divisor of a and b. Show that if $a \equiv b \pmod{n}$, then

$$\frac{a}{d} \equiv \frac{b}{d} \pmod{n/\gcd(d,n)}.$$

- 3. Let p be an odd prime.
 - (a) Give a proof of the result from the lectures that there are exactly (p-1)/2 quadratic residues modulo p.
 - (b) Let $a \in \mathbb{Z}$ be such that p does not divide a. Show the result from the lectures that $0, a, 2a, \ldots, (p-1)a$ is a complete set of residues mod p and use this to evaluate the sum

$$\sum_{i=1}^{p-1} \left(\frac{ai}{p}\right),$$

where $\left(\frac{ai}{p}\right)$ is the Legendre symbol.

SECTION B

- 4. (a) Evaluate the Legendre symbol $\left(\frac{59}{131}\right)$.
 - (b) Show that 5 is a quadratic residue (QR) modulo every prime of the form 10n+1 and that it is not a QR modulo every prime of the form 10n-7, for $n \in \mathbb{N}$.
 - (c) Let p be a prime of the form 8n + 1, $n \in \mathbb{N}$. Show that the polynomial $x^8 1$ divides the polynomial $x^{p-1} 1$, that is, show that there exists a polynomial g(x) such that

$$x^{p-1} - 1 = (x^8 - 1)g(x).$$

Use this to prove that the congruence $x^4 \equiv -1 \pmod{p}$ has a solution $x \in \mathbb{N}$.

(d) Let p be an odd prime which is not of the form 8n + 1 for any $n \in \mathbb{N}$. Show that the congruence

$$x^4 \equiv -1 \pmod{p}$$

does not have any solution $x \in \mathbb{N}$.

- 5. (a) Let g be a primitive root mod 17 and let $i \in \mathbb{N}$ be a number such that $g^i \equiv 13 \pmod{17}$. Show that for any $n \in \mathbb{N}$, we have $g^{in} \equiv 13 \pmod{17}$ if and only if $in \equiv i \pmod{16}$.
 - (b) Find a primitive root $g \mod 17$ and a number $i \in \mathbb{N}$ such that $g^i \equiv 13 \pmod{17}$. Justify your answer.
 - (c) Find four distinct solutions $x \in \mathbb{N}$ with x < 17 to the congruence

$$x^{44} \equiv 13 \pmod{17}.$$

6. (a) Find natural numbers a and b such that

$$\left|\sqrt{52} - \frac{a}{b}\right| < 10^{-6}.$$

- (b) Assume that $x^4 y^4 = 2z^2$ has a solution in natural numbers x, y, z. Show that there exists a solution $a^4 b^4 = 2c^2$ in natural numbers a, b, c such that a and b are odd.
- (c) Assume that a, b, c are as in the previous part. Show that there exists a solution $a_1^4 b_1^4 = 2c_1^2$ in natural numbers a_1, b_1, c_1 such that $gcd(a_1, b_1, c_1) = 1$.