

EXAMINATION PAPER

Examination Session: May

2019

Year:

Exam Code:

MATH2627-WE01

Title:

Geometric Topology II

Time Allowed:	2 hours	
Additional Material provided:	None	
Materials Permitted:	None	
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.
Visiting Students may use dictionaries: No		

Instructions to Candidates:	Credit will be given for the best TWO answers from Section A and the best TWO answers from Section B. Questions in Section B carry ONE and a HALF times as many marks as those in Section A.

Revision:

SECTION A

- 1. (a) State the defining relations of the Alexander-Conway polynomial.
 - (b) Calculate the Alexander-Conway polynomial of the Hopf link with positive linking number.
 - (c) Let L be an oriented link diagram containing a tangle as in Figure 1(a), and let L_{00} be the link diagram obtained from L by replacing this tangle with the tangle from Figure 1(b), and L_{∞} the link diagram obtained from L by replacing this tangle with the tangle from Figure 1(c).

Figure 1.

Derive a formula relating the Alexander-Conway polynomials of L, L_{00} and L_{∞} .

- (d) Show that the trefoil knot admits a diagram only involving tangles as in Figure 1(a) (possibly with different orientations), and calculate its Alexander-Conway polynomial.
- 2. (a) Apply Seifert's algorithm to the knot diagram below.

- (b) Determine the genus of the resulting surface.
- (c) Calculate the genus of this knot by first simplifying it.

r I	Page number	-	-	ר ו
L	2 of F			I
L	3015			I
Ľ				I
L		_	_	٦

Ēx	am code
	MATH2627-WE01
1	1
L _	

- 3. (a) State the Poincaré-Hopf Theorem.
 - (b) Assume the following surface has a vector field with exactly one singularity on the interior, and where the vector field is as indicated on the boundary. Determine the index of the singularity.

SECTION B

- 4. Given a link diagram D, define the *double bracket polynomial* of D, denoted $\langle\!\langle D \rangle\!\rangle$, as the Laurent polynomial in q obtained by the following rules.
 - (DP1) $\langle\!\langle O \rangle\!\rangle = q + q^{-1}$, where O is the standard diagram of the unknot.
 - (DP2) $\langle\!\langle D_1 \sqcup D_2 \rangle\!\rangle = \langle\!\langle D_1 \rangle\!\rangle \cdot \langle\!\langle D_2 \rangle\!\rangle$, where $D_1 \sqcup D_2$ is the disjoint union of link diagrams D_1 and D_2 .

(DP3)
$$\langle\!\!\langle \times \rangle\!\!\rangle = \langle\!\!\langle \times \rangle\!\!\rangle - q \langle\!\!\langle \rangle \rangle$$
 ()

(a) Calculate $\langle\!\langle D \rangle\!\rangle$ for D a diagram of

- the unlink with three components and no crossings.
- the unknot with exactly one positive crossing and no negative crossings.
- the unknot with exactly one negative crossing and no positive crossings.
- the Hopf link with a two crossing diagram. You only need to do one of the two possible diagrams.
- the right-handed trefoil knot with exactly three positive crossings and no negative crossings.
- (b) For an oriented link diagram D denote by $n^+(D)$ the number of positive crossings, and denote by $n^-(D)$ the number of negative crossings in the diagram D. Let

$$K(D) = (-1)^{n^{-}(D)} q^{n^{+}(D) - 2n^{-}(D)} \langle\!\langle D \rangle\!\rangle.$$

Show that K(D) is invariant under the three Reidemeister moves.

- (c) Calculate K(L) for L the Hopf link with linking number -1, and K(T) for T the right-hand trefoil knot.
- 5. (a) State the defining relations of the absolute polynomial $Q_L(x)$ of a link L.
 - (b) Determine the absolute polynomial of the unlink U_n with n components for each $n \ge 2$.
 - (c) Let L_1 and L_2 be links. Show that

$$Q_{L_1 \sqcup L_2}(x) = Q_{U_2}(x) \cdot Q_{L_1}(x) \cdot Q_{L_2}(x),$$

where $L_1 \sqcup L_2$ is the link obtained by disjoint union.

(d) Let K_1 and K_2 be knots with K_2 invertible. Show that

$$Q_{K_1+K_2}(x) = Q_{K_1}(x) \cdot Q_{K_2}(x),$$

where $K_1 + K_2$ is the composition of the two knots.

- 6. (a) State the definition of the index $I_v(p)$ of an isolated singularity p of a vector field v.
 - (b) Draw the tangent curves of a vector field v in the plane which has an isolated singularity
 - of index 4.
 - of index -2.
 - (c) Let $v: \mathbb{C} \to \mathbb{C}$ be a vector field in the plane with an isolated singularity p. Let w be the vector field given by

$$w(z) = \overline{v(z)},$$

the complex conjugate of v. Show that p is an isolated singularity of w, and express $I_w(p)$ in terms of $I_v(p)$.

(d) Let $v: \mathbb{C} \to \mathbb{C}$ be a vector field in the plane with an isolated singularity p. Let u be the vector field given by

$$u(z) = v(z) \cdot v(z),$$

the square of v. Show that p is an isolated singularity of u, and express $I_u(p)$ in terms of $I_v(p)$.