

EXAMINATION PAPER

Examination Session: May

2019

Year:

Exam Code:

MATH3031-WE01

Title:

Number Theory III

Time Allowed:	3 hours			
Additional Material provided:	None			
Materials Permitted:	None			
Calculators Permitted:	Yes	Models Permitted: Casio fx-83 GTPLUS or Casio fx-85 GTPLUS.		
Visiting Students may use dictionaries: No				

Instructions to Candidates:	Credit will be given for: the best FOUR answers from Section and the best THREE answers from S Questions in Section B carry TWICE in Section A.	ection B. as many ma	arks as those
		Daviaian	1

Revision:

SECTION A

- 1. Let p be an odd prime and $\zeta = e^{2\pi i/p}$ a p-th root of unity.
 - (a) Show that the minimal polynomial of ζ over \mathbb{Q} is equal to

$$\Phi(x) = x^{p-1} + x^{p-2} + \ldots + 1.$$

(b) Write R for the ring of integers of $\mathbb{Q}(\zeta)$. Show that for all $j = 1, 2, \ldots, p-1$ we have

$$\frac{1-\zeta^j}{1-\zeta} \in R^{\times}$$

2. Given that the ring $\mathbb{Z}[i]$ is a Euclidean Domain, find the number of solutions (a, b) with $a, b \in \mathbb{Z}$ of the equation

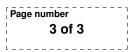
$$a^2 + b^2 = 2^3 \times 3^4 \times 37^7.$$

Carefully justify every step of your answer.

- 3. Let $R = \mathbb{Z}[\sqrt{-5}]$.
 - (a) Let $\mathfrak{p} \subset R$ be a non-zero prime ideal in R. Show that there exists a unique prime $p \in \mathbb{Z}$ such that $\mathfrak{p} \supseteq (p)_R$.
 - (b) Find the inverse of the ideal $I = (3, 2 \sqrt{-5})_R$.
 - (c) With notation as above, is I a prime ideal? Justify your answer.
- 4. (a) Find the fundamental unit in $\mathbb{Z}[\sqrt{11}]$.
 - (b) Let $d \in \mathbb{Z}$ with d > 1. Prove that if $x + y\sqrt{d} \in \mathbb{Z}[\sqrt{d}]$ is a unit such that $x + y\sqrt{d} > 1$, then x > 0 and y > 0.
 - (c) Give formulae for the solutions $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ to $x^2 11y^2 = 5$. (You may use that $\mathbb{Z}[\sqrt{11}]$ is a UFD.)
- 5. Let $K = \mathbb{Q}(\sqrt{-23})$ and $R = \mathcal{O}_K$. Let $I_1 = (2, \frac{1+\sqrt{-23}}{2})_R$ and $I_2 = (3, \frac{1+\sqrt{-23}}{2})_R$.
 - (a) Compute the norm of the ideal I_1 .
 - (b) Show that $[I_1] = [I_2]^{-1}$ in the class group of R.
 - (c) Show that $[I_1] \neq [I_2]$ in the class group of R.
- 6. (a) Let K be a number field of degree $n = [K : \mathbb{Q}]$ and Δ_K its discriminant. Show that

$$|\Delta_K| \ge \left(\frac{\pi}{4}\right)^n \frac{n^{2n}}{(n!)^2}.$$

(b) Let $K = \mathbb{Q}(\sqrt{d})$, where d is a square-free integer. Show that the class number h_K is 1 when $2 \le d \le 5$.



SECTION B

- 7. (a) Show that the ring $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean Domain.
 - (b) Let R be the ring of integers of a number field K. A function $\phi : R \setminus \{0\} \to \mathbb{N}$ is called a *Dedekind-Hasse* function if for any non-zero elements $a, b \in R$ either $a \in (b)_R$ or there is a non-zero $x \in (a, b)_R$ such that $\phi(x) < \phi(b)$.
 - (i) Show that an R for which a Dedekind-Hasse function exists is a Principal Ideal Domain.
 - (ii) Assume now that R is a Principal Ideal Domain and hence also a Unique Factorization Domain. Define a function $\phi : R \setminus \{0\} \to \mathbb{N}$ by setting $\phi(u) = 1$ if $u \in R^{\times}$ and $\phi(r) = 2^n$ if $r = p_1 p_2 \cdots p_n$ where $p_i \in R$ are irreducible. Show that ϕ is a Dedekind-Hasse function.
 - (iii) Assume again that R is a Principal Ideal Domain. Show that the function $\phi(r) := |N_{K/\mathbb{Q}}(r)|$ (the absolute value of the norm) is a Dedekind-Hasse function. (Hint: Here you may want to use the fact that an $r \in R$ is a unit if and only if $N_{K/\mathbb{Q}}(r) = \pm 1$.)
- 8. Let $K = \mathbb{Q}(\sqrt{d})$ for some square-free integer d with $d \neq 0, 1$, and write R for the ring of integers of K.
 - (a) (i) Show that the norm of ideals of R is multiplicative, that is N(IJ) = N(I)N(J) for non-zero ideals $I, J \subseteq R$.
 - (ii) Let $p \in \mathbb{Z}$ be an odd prime and assume that $d \equiv m^2 \not\equiv 0 \pmod{p}$ for some integer m. Show that $(p)_R = \mathfrak{p}\widetilde{\mathfrak{p}}$ with $\mathfrak{p} \neq \widetilde{\mathfrak{p}}$, where $\mathfrak{p} = (p, m \sqrt{d})_R$.
 - (b) In the notation above we take d = -29.
 - (i) Find the number of ideals in R of norm equal to 33, and of norm equal to 275. Justify your answer.
 - (ii) Are there any non-principal ideals of norm 33? If yes, then give such an ideal by listing a set of generators for it.
- 9. (a) Let $K = \mathbb{Q}(\theta)$ where $\theta \in \mathbb{C}$ is such that $\theta^3 \theta 2 = 0$. Compute the discriminant of $\mathbb{Z}[\theta]$ and prove that $\mathbb{Z}[\theta] = \mathcal{O}_K$.
 - (b) Let p be an odd prime, $\zeta = e^{2\pi i/p}$ a p-th root of unity, and $K = \mathbb{Q}(\zeta)$. Compute the discriminant Δ_K .
- 10. Let $K = \mathbb{Q}(\sqrt{-17})$ and $R = \mathcal{O}_K$.
 - (a) Decompose the ideals $(2)_R$, $(3)_R$ and $(5)_R$ into products of prime ideals.
 - (b) Find all the ideals in R of norm at most 5.
 - (c) Show that the class number h_K is at most 5.
 - (d) Determine the class number h_K .