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SECTION A

1. Consider a Quantum Mechanical system with a two-dimensional Hilbert space spanned
by the orthonormal basis S = {|a〉, |b〉}. An observable M̂ is defined through

M̂ |a〉 =|a〉+ 2 |b〉, M̂ |b〉 =|b〉+ 2 |a〉 .

(a) Find the matrix form of M̂ in the basis S.

(b) What are the possible outcomes in a measurement of M̂?

(c) Write the state immediately after a measurement of M̂ which yielded the small-
est value possible.

2. Consider a two-dimensional Hilbert space and an observable Ω̂.

(a) If P̂1 and P̂2 are the projection operators on the eigenspaces of Ω̂ and you are
given that

P̂1 =
1

2

(
1 1
1 1

)
,

find the matrix form of P̂2.

(b) If the corresponding eigenvalues are ω1 = 1 and ω2 = −1, find the matrix form
of Ω̂.

(c) Compute the expectation value 〈 Ω̂ 〉 for the state

|ψ〉 =
1√
2

(
1
−1

)
.
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3. (a) State how an observable Ω̂ transforms passively under a unitary transformation
Û .

(b) Consider a one-dimensional system with position and momentum operators x̂
and p̂. Under a unitary transformation Û , they transform to the new operators
x̂′ and p̂′. Find the commutation relation that the new position and momentum
operators satisfy.

(c) For a two-dimensional system, the angular momentum operator is given by

L̂ = x̂ p̂y − ŷ p̂x. Compute the commutators
[
x̂2, L̂

]
,
[
ŷ2, L̂

]
and

[
x̂2 + ŷ2, L̂

]
.

What does that tell you about the way that x̂2+ŷ2 transforms under rotations?

4. The potentials for two different one-dimensional quantum systems are shown in the
figure below.

A quantum particle is propagating in one dimension under the influence of these
potentials. Answer the following questions:

(a) Is the energy eigen spectrum of the particle in the potential A) discrete or not?
If only part of the spectrum is discrete, explain when this happens.

(b) Is the energy eigen spectrum of the particle in the potential B) discrete or not?
If only part of the spectrum is discrete, explain for which values of energies
this happens.

(c) For the potential B) state for which values of the variable x the wave functions
are oscillatory and for which values of x they are not. If the range in which
this happens depends on the energy E of the particle, please clearly say for
which values of x the behaviour of wave functions changes.

(d) For the potential B), and for the particle of energy E < V2, indicate where the
probability of finding the particle is the smallest. In the limit V2 →∞ and for
the highly excited particle of energy E, with V1 � E < V2, indicate where the
probability of finding the particle is the largest.
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5. (a) Write down the basic commutation relation [L̂i, L̂j] between arbitrary angular

momentum operators L̂i (i, j = x, y, z).

(b) Using the answer from the previous part, evaluate the following four commu-
tators

[L̂xL̂y, L̂x] , [L̂2, L̂x + L̂y] , [L̂x, x̂] , [L̂y, ẑ] ,

where L̂2 = L̂2
x + L̂2

y + L̂2
z.

6. A system consists of two particles of mass m which are attached to the ends of a
massless rigid rod of length a. Assume that this system is free to rotate in three-
dimensional space about its center, but that the center of the system is fixed.

(a) Write the classical and quantum expressions for the energy of this system, and
express them using the angular momentum of the system.

(b) Evaluate the energy spectrum of this system and say what are the eigen energy
states and what is the degeneracy of the n-th energy level.
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SECTION B

7. Consider a Quantum Mechanical system with observables ŝx, ŝy and ŝz satisfying

[ŝx, ŝy] = i ~ ŝz, [ŝy, ŝz] = i ~ ŝx, [ŝx, ŝz] = −i ~ ŝy .

The Hamiltonian operator is given by Ĥ = µ ŝz with µ a real number.

(a) Show that if the Hamiltonian Ĥ of any Quantum Mechanical system is time
independent, then the expectation value 〈 Ω̂ 〉 of any observable Ω̂ satisfies

d

dt
〈 Ω̂ 〉 = 〈 i

~

[
Ĥ, Ω̂

]
〉 .

(b) For the system at hand, determine the time dependence of the expectation
values 〈 ŝx 〉, 〈 ŝy 〉 and 〈 ŝz 〉. Your final answer should be parametrised by
three constants of integration and the number µ.
Hint: You are given that the most general real solution of the system ȧ(t) =
ω b(t), ḃ(t) = −ω a(t) has a(t) = A cos(ω t) + B sin(ω t) with A and B real
constants.

(c) You are now given that the Hilbert space of the system you have been studying
is two-dimensional and that

ŝx =
~
2

(
0 1
1 0

)
, ŝy =

~
2

(
0 −i
i 0

)
.

Determine the matrix form of ŝz and fix the three constants of integration you
were left with in the previous question for the initial state

|ψ(t = 0)〉 =
1√
2

(
1
1

)
.

(d) For the system and initial state you were given in c), find the times tn at which
the time-evolved state |ψ(t)〉 becomes an eigenstate of ŝx.
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8. Consider the isotropic two-dimensional simple harmonic oscillator of frequency ω
and mass m. The Quantum Mechanical Hamiltonian Ĥ and angular momentum L̂
operators can be expressed as

Ĥ = ~ω
(
â† â+ b̂† b̂+ 1

)
L̂ = ~

(
â† â− b̂† b̂

)
with the only non-trivial commutators among the operators â†, â, b̂† and b̂ being

[â, â†] = 1, [b̂, b̂†] = 1 .

We define the unit norm states

|m,n〉 =
1√
m!

1√
n!

(â†)m (b̂†)n |0, 0〉

for m and n non-negative integers and with | 0, 0〉 being the correctly normalised
ground state satisfying â |0, 0〉 = b̂ |0, 0〉 = 0.

(a) Use induction to show that [â, (â†)m] = m (â†)m−1 and [b̂, (b̂†)n] = n (b̂†)n−1 with
m and n being positive integers.

(b) Compute the commutator between Ĥ and L̂. Is angular momentum conserved?
Is the Hamiltonian invariant under small rotations? Justify your answers.

(c) Show that the states |m,n〉 are simultaneous eigenstates of Ĥ and L̂. Give the
expressions for the corresponding eigenvalues in terms of m and n.

(d) Consider a state |ψ〉 for which experimentalists measure Ĥ and L̂. For Ĥ they
only find the outcomes ~ω and 2~ω with equal probability. For L̂ they only
find the values 0 and −~. Write down the most general state that is consistent
with these observations. Given these constraints, what are the probabilities to
measure angular momentum equal to 0 ?
Hint: You should end up with a one parameter family of states.

(e) Consider the state | ψ〉 that you determined in the previous question as the
initial state and find how it evolves with time t.
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9. The exact two-dimensional simple harmonic oscillator (SHO) in one dimension has
a potential given by

V̂0 =
1

2
κ2(x2 + y2) ,

and is perturbed by the Hamiltonian

Ĥ ′ = α(â†x + âxa
†
y)

where α > 0 is a small constant, and âxây, â
†
x, â
†
y are annihilation and creation

operators for the one-dimensional simple harmonic oscillators along the x and y
axis.

(a) Write down the spectrum of the unperturbed system (α = 0) and explain what
is the degeneracy of each eigen energy state.

(b) Apply first order perturbation theory to compute the energy shift to the ground
state, when α 6= 0.

(c) Apply first order perturbation theory to compute the corrections to the ground
state of the free system, when α 6= 0.

(d) Apply first order perturbation theory to compute corrections to the energy of
the second excited state.

Hint: Recall from the lecture that the second excited state has the total
occupation number (i.e. the total number of excitations) n = 2, and don’t
worry that the perturbation Hamiltonian is not Hermitian.
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10. In the WKB approximation the wave function of the quantum particle in the po-
tential V (x), is given (away from the turning points) by a linear combination of the
wave functions

ΨWKB,±(x) =
a±√
|p(x)|

e±
1
~

R x
0 p(y)dy , p(x) =

√
2m/~(V (x)− E) ,

where V (x) can be larger or smaller than E.

For V (x) we will consider two possibilities, VA(x) or VB(x), given by

VA(x) =


∞ x < 0

0 0 < x < L

V0x L < x < 2L

∞ x > 2L

VB(x) =


0 x < 0

V0 + αx 0 < x < L

0 L < x

,

where V0 > 0 is a positive constant. One quantum particle of mass m is bounc-
ing inside the potential VA(x) and another quantum particle, also of mass m, is
approaching the potential VB(x) from x = −∞.

Apply the WKB approximation to answer the following questions:

(a) For the first system with potential VA(x), write down the boundary conditions
which the wave function of the particle has to satisfy at x = 0 and x = 2L.

(b) What is the energy spectrum for the particle of energy E > 2V0L inside the
potential VA(x) ? You do not have to solve explicitly for En, but you can leave
the result at the level of the equation which determines the energy.

(c) Following the lectures, explain the general logic for computing the tunneling
probability for a particle which approaches the potential VB(x), in the WKB
approximation.

(d) Apply the general logic from the previous part of the question to evaluate what
is the probability for a particle which approaches the potential VB(x) from the
left with the energy E < V0 to tunnel through this potential.
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